e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abbaspour, M., Makhmalzadeh, B. S., Rezaee, B., Shoja, S., & Ahangari, Z. (2015). Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur Journal of Microbiology, 8(10), Article e24239. https://doi.org/10.5812/jjm.24239
Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., Caramella, C., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152-157. https://doi.org/10.1016/j.colsurfb.2013.08.043
Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955-1965. https://doi.org/10.1007/s00289-020-03194-4
Balaji, J., & Sethuraman, M. G. (2017). Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium. International Journal of Biological Macromolecules, 104, 1730-1739. https://doi.org/10.1016/j.ijbiomac.2017.03.115
Bedolla-Cázares, F., Hernández-Marcelo, P. E., Gómez-Hurtado, M. A., Rodríguez-García, G., Del Río, R. E., López-Castro, Y., Garcia-Merinos, J. P., Torres-Valencia, J. M., & González-Campos, J. B. (2017). Silver nanoparticles from AgNO3-affinin complex synthesized by an ecofriendly route: Chitosan-based electrospun composite production. Clean Technologies and Environmental Policy, 19(3), 897-906. https://doi.org/10.1007/s10098-016-1285-x
Boccaccini, A. R., & Ma, P. X. (Eds.). (2014). Tissue Engineering Using Ceramics and Polymers. Elsevier.
Boonkong, W., Petsom, A., & Thongchul, N. (2013). Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device. Journal of Materials Science: Materials in Medicine, 24(6), 1581-1593. https://doi.org/10.1007/s10856-013-4864-y
Budnyak, T. M., Pylypchuk, I. V., Tertykh, V. A., Yanovska, E. S., & Kolodynska, D. (2015). Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Research Letters, 10(1), 1-10. https://doi.org/10.1186/s11671-014-0722-1
Budnyak, T. M., Yanovska, E. S., Kołodyńska, D., Sternik, D., Pylypchuk, I. V., Ischenko, M. V., & Tertykh, V. A. (2016). Preparation and properties of organomineral adsorbent obtained by sol–gel technology. Journal of Thermal Analysis and Calorimetry, 125(3), 1335-1351. https://doi.org/10.1007/s10973-016-5581-9
Celebi, H., & Kurt, A. (2015). Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate Polymers, 133, 284-293. https://doi.org/10.1016/j.carbpol.2015.07.007
Chen, C., Liu, P., & Lu, C. (2008). Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chemical Engineering Journal, 144(3), 509-513. https://doi.org/10.1016/j.cej.2008.07.047
Chrissafis, K., Paraskevopoulos, K. M., Papageorgiou, G. Z., & Bikiaris, D. N. (2008). Thermal and dynamic mechanical behavior of bionanocomposites: Fumed silica nanoparticles dispersed in poly (vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). Journal of Applied Polymer Science, 110(3), 1739-1749. https://doi.org/10.1002/app.28818
Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857-879. https://doi.org/10.1586/eri.11.59
Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous chitosan - Sepiolite nanocomposites. Chemistry of Materials, 18(6), 1602-1610.
de Mesquita, J. P., Donnici, C. L., & Pereira, F. V. (2010). Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules, 11(2), 473-480. https://doi.org/10.1021/cm0523642
Denkbaş, E. U. R. B., Öztürk, E., Özdem&unknown; r, N., Keçec&unknown, K., & Agalar, C. (2004). Norfloxacin-loaded chitosan sponges as wound dressing material. Journal of Biomaterials Applications, 18(4), 291-303.
De Silva, R. T., Pasbakhsh, P., Goh, K. L., Chai, S. P., & Ismail, H. J. P. T. (2013). Physico-chemical characterisation of chitosan/halloysite composite membranes. Polymer Testing, 32(2), 265-271. https://doi.org/10.1016/j.polymertesting.2012.11.006
Dilamian, M., Montazer, M., & Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly (ethylene oxide) incorporating poly (hexamethylene biguanide) hydrochloride. Carbohydrate Polymers, 94(1), 364-371. https://doi.org/10.1016/j.carbpol.2013.01.059
Dobrovolskaya, I. P., Yudin, V. E., Popryadukhin, P. V., Ivan’kova, E. M., Shabunin, A. S., Kasatkin, I. A., & Morgantie, P. (2018). Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydrate Polymers, 194, 260-266. https://doi.org/10.1016/j.carbpol.2018.03.074
Dresvyanina, E. N., Grebennikov, S. F., Elokhovskii, V. Y., Dobrovolskaya, I. P., Ivan’kova, E. M., Yudin, V. Е., Heppe, K., & Morganti, P. (2020). Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydrate Polymers, 245, Article 116552. https://doi.org/10.1016/j.carbpol.2020.116552
El Achaby, M., Essamlali, Y., El Miri, N., Snik, A., Abdelouahdi, K., Fihri, A., Zahouily, M., & Solhy, A. (2014). Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio‐nanocomposites. Journal of Applied Polymer Science, 131(22), 1-11. https://doi.org/10.1002/app.41042
El-saied, H. A. A., & Ibrahim, A. M. (2020). Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition. Journal of Environmental Chemical Engineering, 8(4), Article 103949. https://doi.org/10.1016/j.jece.2020.103949
Elsawy, M. A., Saad, G. R., & Sayed, A. M. (2016). Mechanical, thermal, and dielectric properties of poly (lactic acid)/chitosan nanocomposites. Polymer Engineering & Science, 56(9), 987-994. https://doi.org/10.1002/pen.24328
Fan, J., Shi, Z., Ge, Y., Wang, Y., Wang, J., & Yin, J. (2012). Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides. Polymer, 53(2), 657-664. https://doi.org/10.1016/j.polymer.2011.11.060
Gu, S. Y., Wang, Z. M., Ren, J., & Zhang, C. Y. (2009). Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Materials Science and Engineering: C, 29(6), 1822-1828. https://doi.org/10.1016/j.msec.2009.02.010
Gulaczyk, I., Kręglewski, M., & Valentin, A. (2003). The N–N stretching band of hydrazine. Journal of Molecular Spectroscopy, 220(1), 132-136. https://doi.org/10.1016/S0022-2852(03)00106-1
Gundloori, R. V., Singam, A., & Killi, N. (2019). Nanobased intravenous and transdermal drug delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra & S. Thomas (Eds.), Applications of Targeted Nano Drugs and Delivery Systems (pp. 551-594). Elsevier. https://doi.org/10.1016/B978-0-12-814029-1.00019-3
Haider, S., & Park, S. Y. (2009). Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb (II) ions from an aqueous solution. Journal of Membrane Science, 328(1-2), 90-96. https://doi.org/10.1016/j.memsci.2008.11.046
Hamdi, M., Feki, A., Bardaa, S., Li, S., Nagarajan, S., Mellouli, M., & Nasri, R. (2020). A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Materials Science and Engineering: C, 113, Article 110978. https://doi.org/10.1016/j.msec.2020.110978
Hammad, A. B. A., Elnahrawy, A. M., & Youssef, A. M. (2019). Sol gel synthesis of hybrid chitosan/calcium aluminosilicate nanocomposite membranes and its application as support for CO2 sensor. International Journal of Biological Macromolecules, 125, 503-509. https://doi.org/10.1016/j.ijbiomac.2018.12.077
Huang, D., Mu, B., & Wang, A. (2012). Preparation and properties of chitosan/poly (vinyl alcohol) nanocomposite films reinforced with rod-like sepiolite. Materials Letters, 86, 69-72. https://doi.org/10.1016/j.matlet.2012.07.020
Huang, D., Wang, W., Kang, Y., & Wang, A. (2012). A chitosan/poly (vinyl alcohol) nanocomposite film reinforced with natural halloysite nanotubes. Polymer Composites, 33(10), 1693-1699. https://doi.org/10.1002/pc.22302
Huang, J., Cheng, Y., Wu, Y., Shi, X., Du, Y., & Deng, H. (2019). Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. International Journal of Biological Macromolecules, 139, 191-198. https://doi.org/10.1016/j.ijbiomac.2019.07.185
Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784-791. https://doi.org/10.1016/j.foodres.2012.06.026
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2009). Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules, 10(6), 1584-1588. https://doi.org/10.1021/bm900163d
Islam, A., Riaz, M., & Yasin, T. (2013). Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. International Journal of Biological Macromolecules, 59, 119-124. https://doi.org/10.1016/j.ijbiomac.2013.04.044
Islam, S., Bhuiyan, M. A., & Islam, M. N. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854-866. https://doi.org/10.1007/s10924-016-0865-5
Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013). In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93(2), 731-739. https://doi.org/10.1016/j.carbpol.2012.12.031
Keten, S., Xu, Z., Ihle, B., & Buehler, M. J. (2010). Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Materials, 9(4), 359-367. https://doi.org/10.1038/nmat2704
Lai, S. M., Yang, A. J. M., Chen, W. C., & Hsiao, J. F. (2006). The properties and preparation of chitosan/silica hybrids using sol-gel process. Polymer-Plastics Technology and Engineering, 45(9), 997-1003. https://doi.org/10.1080/03602550600726269
Li, F., Biagioni, P., Finazzi, M., Tavazzi, S., & Piergiovanni, L. (2013). Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydrate Polymers, 92(2), 2128-2134. https://doi.org/10.1016/j.carbpol.2012.11.091
Li, L., Yang, H., Li, X., Yan, S., Xu, A., You, R., & Zhang, Q. (2021). Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Carbohydrate Polymers, 253, Article 117214. https://doi.org/10.1016/j.carbpol.2020.117214
Li, M., Han, M., Sun, Y., Hua, Y., Chen, G., & Zhang, L. (2019). Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. International Journal of Biological Macromolecules, 122, 1120-1127. https://doi.org/10.1016/j.ijbiomac.2018.09.061
Li, P. C., Liao, G. M., Kumar, S. R., Shih, C. M., Yang, C. C., Wang, D. M., & Lue, S. J. (2016). Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochimica Acta, 187, 616-628. https://doi.org/10.1016/j.electacta.2015.11.117
Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533-7549. https://doi.org/10.1039/C7RA13510F
Liu, M., Zheng, H., Chen, J., Li, S., Huang, J., & Zhou, C. (2016). Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydrate Polymers, 152, 832-840. https://doi.org/10.1016/j.carbpol.2016.07.042
Liu, Y. L., Chen, W. H., & Chang, Y. H. (2009). Preparation and properties of chitosan/carbon nanotube nanocomposites using poly (styrene sulfonic acid)-modified CNTs. Carbohydrate Polymers, 76(2), 232-238. https://doi.org/10.1016/j.carbpol.2008.10.021
Lu, B., Li, T., Zhao, H., Li, X., Gao, C., Zhang, S., & Xie, E. (2012). Graphene-based composite materials beneficial to wound healing. Nanoscale, 4(9), 2978-2982. https://doi.org/10.1039/C2NR11958G
Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate Polymers, 156, 460-469. https://doi.org/10.1016/j.carbpol.2016.09.051
Meng, D., Erol, M., & Boccaccini, A. R. (2010). Processing technologies for 3D nanostructured tissue engineering scaffolds. Advanced Engineering Materials, 12(9), B467-B487. https://doi.org/10.1002/adem.201080019
Packirisamy, R. G., Govindasamy, C., Sanmugam, A., Venkatesan, S., Kim, H. S., & Vikraman, D. (2019). Synthesis of novel Sn1-xZnxO-chitosan nanocomposites: Structural, morphological and luminescence properties and investigation of antibacterial properties. International Journal of Biological Macromolecules, 138, 546-555. https://doi.org/10.1016/j.ijbiomac.2019.07.120
Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2018). Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. International Journal of Biological Macromolecules, 107, 1888-1897.
Penchev, H., Paneva, D., Manolova, N., & Rashkov, I. (2010). Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydrate Research, 345(16), 2374-2380. https://doi.org/10.1016/j.carres.2010.08.014
Pinto, T. D. S., Alves, L. A., de Azevedo Cardozo, G., Munhoz, V. H., Verly, R. M., Pereira, F. V., & de Mesquita, J. P. (2017). Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer: Morphology, thickness and molecular interactions. Materials Chemistry and Physics, 186, 81-89. https://doi.org/10.1016/j.matchemphys.2016.10.032
Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A., & Kotov, N. A. (2007). Ultrastrong and stiff layered polymer nanocomposites. Science, 318(5847), 80-83. https://doi.org/10.1126/science.1143176
Poonguzhali, R., Basha, S. K., & Kumari, V. S. (2017). Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. International Journal of Biological Macromolecules, 105, 111-120. https://doi.org/10.1016/j.ijbiomac.2017.07.006
Qasim, S. B., Zafar, M. S., Najeeb, S., Khurshid, Z., Shah, A. H., Husain, S., & Rehman, I. U. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19(2), Article 407. https://doi.org/10.3390/ijms19020407
Rahmani, H., Najafi, S. H. M., Ashori, A., Fashapoyeh, M. A., Mohseni, F. A., & Torkaman, S. (2020). Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydrate Polymers, 230, Article 115606. https://doi.org/10.1016/j.carbpol.2019.115606
Raoufi, D. (2013). Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy, 50, 932-937. https://doi.org/10.1016/j.renene.2012.08.076
Rezvani, H., Riazi, M., Tabaei, M., Kazemzadeh, Y., & Sharifi, M. (2018). Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ Chitosan nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 15-27. https://doi.org/10.1016/j.colsurfa.2018.02.012
Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. (2015). Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass - Chitin nanofillers and chitosan. Reactive and Functional Polymers, 89, 31-39. https://doi.org/10.1016/j.reactfunctpolym.2015.03.003
Salehizadeh, H., Hekmatian, E., Sadeghi, M., & Kennedy, K. (2012). Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure. Journal of Nanobiotechnology, 10(1), 1-7. https://doi.org/10.1186/1477-3155-10-3
Santos, K. O., Barbosa, R. C., da Silva Buriti, J., Bezerra Junior, A. G., de Sousa, W. J. B., de Barros, S. M. C., de Oliveira, R. J., & Fook, M. V. L. (2019). Thermal, chemical, biological and mechanical properties of chitosan films with powder of eggshell membrane for biomedical applications. Journal of Thermal Analysis and Calorimetry, 136(2), 725-735. https://doi.org/10.1007/s10973-018-7666-0
Saravanan, R., Aviles, J., Gracia, F., Mosquera, E., & Gupta, V. K. (2018). Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. International Journal of Biological Macromolecules, 109, 1239-1245. https://doi.org/10.1016/j.ijbiomac.2017.11.125
Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317-352. https://doi.org/10.1080/15583720802022182
Sharma, G., Naushad, M., Kumar, A., Kumar, A., Ahamad, T., & Stadler, F. J. (2020). Facile fabrication of chitosan-cl-poly (AA)/ZrPO4 nanocomposite for remediation of rhodamine B and antimicrobial activity. Journal of King Saud University-Science, 32(2), 1359-1365. https://doi.org/10.1016/j.jksus.2019.11.028
Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H. N., Singh, S. P., & Arora, K. (2013). Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors and Actuators B: Chemical, 185, 675-684. https://doi.org/10.1016/j.snb.2013.05.014
Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, Article 106722. https://doi.org/10.1016/j.polymertesting.2020.106722
Siqueira, J. R., Gasparotto, L. H., Crespilho, F. N., Carvalho, A. J., Zucolotto, V., & Oliveira, O. N. (2006). Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. The Journal of Physical Chemistry B, 110(45), 22690-22694. https://doi.org/10.1021/jp0649089
Sreedhar, B., Aparna, Y., Sairam, M., & Hebalkar, N. (2007). Preparation and characterization of HAP/carboxymethyl chitosan nanocomposites. Journal of Applied Polymer Science, 105(2), 928-934. https://doi.org/10.1002/app.26140
Khan, T. A., Peh, K. K., & Ch’ng, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303-311.
Thou, C. Z., Khan, F. S. A., Mubarak, N. M., Ahmad, A., Khalid, M., Jagadish, P., Walvekar, R., Abdullah, E. C., Khan, S., Khan, M., Hussain, S., Ahmad, I., & Algarni, T. S. (2021). Surface charge on chitosan/cellulose nanowhiskers composite via functionalized and untreated carbon nanotube. Arabian Journal of Chemistry, 14(3), 103022. https://doi.org/10.1016/j.arabjc.2021.103022
Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2011). Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bulletin of Materials Science, 34(1), 29-35. https://doi.org/10.1007/s12034-011-0032-5
Türkeş, E., & Açıkel, Y. S. (2020). Synthesis and characterization of magnetic halloysite-chitosan nanocomposites: Use in the removal of methylene blue in wastewaters. International Journal of Environmental Science and Technology, 17(3), 1281-1294. https://doi.org/10.1007/s13762-019-02550-w
Varma, H. K., Yokogawa, Y., Espinosa, F. F., Kawamoto, Y., Nishizawa, K., Nagata, F., & Kameyama, T. (1999). Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials, 20(9), 879-884. https://doi.org/10.1016/S0142-9612(98)00243-9
Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541-548. https://doi.org/10.1038/35069000
Wang, D., Lu, Q., Wei, M., & Guo, E. (2018). Ultrasmall Ag nanocrystals supported on chitosan/PVA nanofiber mats with bifunctional properties. Journal of Applied Polymer Science, 135(28), 46504. https://doi.org/10.1002/app.46504
Wang, H. M., Chou, Y. T., Wen, Z. H., Wang, Z. R., Chen, C. H., & Ho, M. L. (2013). Novel biodegradable porous scaffold applied to skin regeneration. PloS One, 8(6), Article e56330. https://doi.org/10.1371/journal.pone.0056330
Wang, J., Law, W. C., Chen, L., Chen, D., & Tang, C. Y. (2017). Fabrication of monodisperse drug-loaded poly (lactic-co-glycolic acid)–chitosan core-shell nanocomposites via pickering emulsion. Composites Part B: Engineering, 121, 99-107. https://doi.org/10.1016/j.compositesb.2017.03.032
Wang, S. F., Shen, L., Tong, Y. J., Chen, L., Phang, I. Y., Lim, P. Q., & Liu, T. X. (2005). Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polymer Degradation and Stability, 90(1), 123-131. https://doi.org/10.1016/j.polymdegradstab.2005.03.001
Wang, X., Cheng, F., Gao, J., & Wang, L. (2015). Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles. Journal of biomaterials applications, 29(8), 1086-1095. https://doi.org/10.1177/0885328214554665
Wu, T., Pan, Y., Bao, H., & Li, L. (2011). Preparation and properties of chitosan nanocomposite films reinforced by poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) treated carbon nanotubes. Materials Chemistry and Physics, 129(3), 932-938. https://doi.org/10.1016/j.matchemphys.2011.05.030
Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q., & Li, K. (2018). Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. International Journal of Biological Macromolecules, 107, 93-104. https://doi.org/10.1016/j.ijbiomac.2017.08.142
Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., & Tanaka, J. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research, 55(1), 20-27. https://doi.org/10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F
Yang, D., Li, J., Jiang, Z., Lu, L., & Chen, X. (2009). Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 64(13), 3130-3137. https://doi.org/10.1016/j.ces.2009.03.042
Yilmaz, E., & Soylak, M. (2020). Functionalized nanomaterials for sample preparation methods. In C. M. Hussain (Ed.), Handbook of Nanomaterials in Analytical Chemistry (pp. 375-413). Elsevier. https://doi.org/10.1016/B978-0-12-816699-4.00015-3
Yin, K., Divakar, P., & Wegst, U. G. (2019). Plant-derived nanocellulose as structural and mechanical reinforcement of freeze-cast chitosan scaffolds for biomedical applications. Biomacromolecules, 20(10), 3733-3745. https://doi.org/10.1021/acs.biomac.9b00784
Youssef, A. M., El-Nahrawy, A. M., & Hammad, A. B. A. (2017). Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. International Journal of Biological Macromolecules, 97, 561-567. https://doi.org/10.1016/j.ijbiomac.2017.01.059
Zafar, M., Najeeb, S., Khurshid, Z., Vazirzadeh, M., Zohaib, S., Najeeb, B., & Sefat, F. (2016). Potential of electrospun nanofibers for biomedical and dental applications. Materials, 9(2), Article 73. https://doi.org/10.3390/ma9020073
Zhang, F., You, X., Dou, H., Liu, Z., Zuo, B., & Zhang, X. (2015). Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Applied Materials & Interfaces, 7(5), 3352-3361. https://doi.org/10.1021/am508319h
Zhang, W., Jia, S., Wu, Q., Wu, S., Ran, J., Liu, Y., & Hou, J. (2012). Studies of the magnetic field intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method. Materials Science and Engineering: C, 32(2), 381-384. https://doi.org/10.1016/j.msec.2011.11.010
Zhong, S. P., Zhang, Y. Z., & Lim, C. T. (2010). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2(5), 510-525. https://doi.org/10.1002/wnan.100
Zhu, Y., Dong, Z., Wejinya, U. C., Jin, S., & Ye, K. (2011). Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. Journal of Biomechanics, 44(13), 2356-2361. https://doi.org/10.1016/j.jbiomech.2011.07.010
ISSN 1511-3701
e-ISSN 2231-8542