Home / Regular Issue / JTAS Vol. 30 (2) Apr. 2022 / JST-3265-2021

 

Dehydration Isopropyl Alcohol to Diisopropyl Ether over Molybdenum Phosphide Pillared Bentonite

Hasanudin Hasanudin, Wan Ryan Asri, Kristina Tampubolon, Fahma Riyanti, Widia Purwaningrum and Karna Wijaya

Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 2, April 2022

DOI: https://doi.org/10.47836/pjst.30.2.47

Keywords: Alcohol dehydration, bentonite, molybdenum phosphide, pillared bentonite

Published on: 1 April 2022

Emissions from gasoline are one of the contributors to air pollution. Diisopropyl ether (DIPE) is an alternative oxygenate additive that can improve gasoline quality, minimizing CO and hydrocarbon gas emissions during combustion. However, there are very few studies on the use of pillared bentonite-based catalysts for DIPE production. This study aims to produce DIPE via dehydration of isopropyl alcohol using a molybdenum phosphide pillared bentonite (MoP-Bentonite) catalyst. The effect of Mo6+ metal concentration on the catalytic activity of isopropyl alcohol dehydration was also investigated. The catalyst that gives the highest DIPE yield will be analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), Gas Sorption Analyzer (GSA), and total acidity using the gravimetric method. In addition, the dehydration product will be analyzed by Gas Chromatography-Mass Spectroscopy (GC-MS). The results showed that MoP has been successfully pillared into bentonite and showed an increase in surface area, acidity, and catalytic activity. The highest yield of DIPE was obtained using a 4 mEq/g MoP-Bentonite catalyst with a DIPE yield of 64.5%.

  • Ahmadi, S., & Almasi, M. (2020). Experimental and modeling study of diisopropyl ether and 2-alkanol; PC-SAFT model and free volume theory. Journal of Chemical Thermodynamics, 142, Article 106025. https://doi.org/10.1016/j.jct.2019.106025

  • Ahmed, A. A., Saaid, I. M., Akhir, N. A. M., & Rashedi, M. (2016). Influence of various cation valence, salinity, pH and temperature on bentonite swelling behaviour. AIP Conference Proceedings, 1774(1), Article 040005. https://doi.org/10.1063/1.4965087

  • Akkouche, A., Benmounah, A., Gueciouer, A., & Chalah, K. (2020). Valorization of mixed metal hydroxide on Algerian Na-Bentonite suspensions: Application to water-based drilling fluid. Egyptian Journal of Petroleum, 29(2), 127-131. https://doi.org/10.1016/j.ejpe.2019.12.005

  • Al-Arkawazi, S. A. F. (2019). The gasoline fuel quality impact on fuel consumption, air-fuel ratio (AFR), lambda (λ) and exhaust emissions of gasoline-fueled vehicles. Cogent Engineering, 6(1), Article 1616866. https://doi.org/10.1080/23311916.2019.1616866

  • Alvarez-Galvan, M. C., Campos-Martin, J. M., & Fierro, J. L. G. (2019). Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. Catalysts, 9(3), Article 293. https://doi.org/10.3390/catal9030293

  • Argyle, M. D., & Bartholomew, C. H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5(1), 145-269.

  • Armenta, M. A., Valdez, R., Silva-Rodrigo, R., & Olivas, A. (2019). Diisopropyl ether production via 2-propanol dehydration using supported iron oxides catalysts. Fuel, 236, 934-941. https://doi.org/10.1016/j.fuel.2018.06.138

  • Aziz, B. K., Salh, D. M., Kaufhold, S., & Bertier, P. (2019). The high efficiency of anionic dye removal using Ce-Al13/pillared clay from Darbandikhan natural clay. Molecules, 24(15), Article 2720. https://doi.org/10.3390/molecules24152720

  • Belousov, P., Semenkova, A., Egorova, T., Romanchuk, A., Zakusin, S., Dorzhieva, O., Tyupina, E., Izosimova, Y., Tolpeshta, I., Chernov, M., & Krupskaya, V. (2019). Cesium sorption and desorption on glauconite, bentonite, zeolite, and diatomite. Minerals, 9(10), Article 625. https://doi.org/10.3390/min9100625

  • Bendou, S., & Amrani, M. (2014). Effect of hydrochloric acid on the structural of sodic-bentonite clay. Journal of Minerals and Materials Characterization and Engineering, 2(5), Article 49867. https://doi.org/10.4236/jmmce.2014.25045

  • Bertella, F., & Pergher, S. B. C. (2017). Reuse of pillaring agent in sequential bentonite pillaring processes. Materials, 10(7), Article 705. https://doi.org/10.3390/ma10070705

  • Blanco-Bonilla, F., Lopez-Pedrajas, S., Luna, D., Marinas, J. M., & Bautista, F. M. (2016). Vanadium oxides supported on amorphous aluminum phosphate: Structural and chemical characterization and catalytic performance in the 2-propanol reaction. Journal of Molecular Catalysis A: Chemical, 416, 105-116. https://doi.org/10.1016/j.molcata.2016.02.026

  • Caglar, B., Cubuk, O., Demir, E., Coldur, F., Catir, M., Topcu, C., & Tabak, A. (2015). Characterization of AlFe-pillared Unye bentonite: A study of the surface acidity and catalytic property. Journal of Molecular Structure, 1089, 59-65. https://doi.org/10.1016/j.molstruc.2015.02.034

  • Carenco, S., Portehault, D., Boissière, C., Mézailles, N., & Sanchez, C. (2013). Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chemical Reviews, 133(10), 7981-8065.

  • Chan, X., Akter, N., Yang, P., Ooi, C., James, A., Boscoboinik, J. A., Parise, J. B., & Kim, T. (2019). Fundamental study of furfuryl alcohol dehydration reaction over molybdenum oxide catalyst. Molecular Catalysis, 466, 19-25. https://doi.org/10.1016/j.mcat.2019.01.011

  • Cheng, R., Shu, Y., Li, L., Zheng, M., Wang, X., Wang, A., & Zhang, T. (2007). Synthesis and characterization of high surface area molybdenum phosphide. Applied Catalysis A: General, 316(2), 160-168. https://doi.org/10.1016/j.apcata.2006.08.036

  • Deng, C., Ding, F., Li, X., Guo, Y., Ni, W., Yan, H., Sun, K., & Yan, Y. M. (2015). Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 4(1), 59-66. https://doi.org/10.1039/c5ta05453b

  • Fan, X., Sun, W., Liu, Z., Gao, Y., Yang, J., Yang, B., & Law, C. K. (2021). Exploring the oxidation chemistry of diisopropyl ether: Jet-stirred reactor experiments and kinetic modeling. Proceedings of the Combustion Institute, 38(1), 321-328. https://doi.org/10.1016/j.proci.2020.06.242

  • Gao, H., Hu, L., Hu, Y., Lv, X., Wu, Y. B., & Lu, G. (2021). Origins of Lewis acid acceleration in nickel-catalysed C–H, C–C and C–O bond cleavage. Catalysis Science & Technology, 11(13), 4417-4428. https://doi.org/10.1039/D1CY00660F

  • Hamza, W., Chtara, C., & Benzina, M. (2015). Characterization and application of Fe and iso-Ti-pillared bentonite on retention of organic matter contained in wet industrial phosphoric acid (54%): Kinetic study. Research on Chemical Intermediates, 41(9), 6117-6140. https://doi.org/10.1007/s11164-014-1726-2

  • Harun, F. W., Almadani, E. A., & Radzi, S. M. (2016). Metal cation exchanged montmorillonite K10 (MMT K10): Surface properties and catalytic activity. Journal of Scientific Research and Development, 3(3), 90-96.

  • Hasanudin, H., Rachmat, A., Said, M., & Wijaya, K. (2020). Kinetic model of crude palm oil hydrocracking over Ni/Mo ZrO2–pillared bentonite catalyst. Periodica Polytechnica Chemical Engineering, 64(2), 238-247. https://doi.org/10.3311/PPch.14765

  • Hayakawa, T., Oya, M., Minase, M., Fujita, K. ichi, Teepakakorn, A. (Pleng), & Ogawa, M. (2019). Preparation of sodium-type bentonite with useful swelling property by a mechanochemical reaction from a weathered bentonite. Applied Clay Science, 175, 124-129. https://doi.org/10.1016/j.clay.2019.04.009

  • Hosseininejad, S., Afacan, A., & Hayes, R. E. (2012). Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chemical Engineering Research and Design, 90(6), 825-833. https://doi.org/10.1016/j.cherd.2011.10.007

  • Kashyap, P., Gahlyan, S., Rani, M., Tiwari, D. P., & Maken, S. (2020). Thermophysical properties of ternary liquid mixture of diisopropyl ether (1) + ethanol (2) + n-heptane (3): Measurement and correlation. Journal of Molecular Liquids, 319(1), Article 114219. https://doi.org/10.1016/j.molliq.2020.114219

  • Kıpçak, İ., & Kalpazan, E. (2020). Preparation of CoB catalysts supported on raw and Na-exchanged bentonite clays and their application in hydrogen generation from the hydrolysis of NaBH4. International Journal of Hydrogen Energy, 45(50), 26434-26444. https://doi.org/10.1016/j.ijhydene.2020.03.230

  • Li, P., Lu, Y., & Wang, J. (2020). The effects of fuel standards on air pollution: Evidence from China. Journal of Development Economics, 146, Article 102488. https://doi.org/10.1016/j.jdeveco.2020.102488

  • Liu, Q., Li, J., Zhao, Z., Gao, M., Kong, L., Liu, J., & Wei, Y. (2016). Synthesis, characterization, and catalytic performances of potassium-modified molybdenum-incorporated KIT-6 mesoporous silica catalysts for the selective oxidation of propane to acrolein. Journal of Catalysis, 344, 38-52. https://doi.org/10.1016/j.jcat.2016.08.014

  • Mara, A., Wijaya, K., Trisunaryati, W., & Mudasir. (2016). Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite. AIP Conference Proceedings, 1725(1), Article 020042. https://doi.org/10.1063/1.4945496

  • Mnasri-Ghnimi, S., & Frini-Srasra, N. (2014). Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al-Zr pillared clay. Applied Clay Science, 88-89, 214-220. https://doi.org/10.1016/j.clay.2013.10.030

  • Mnasri, S., Hamdi, N., Frini-Srasra, N., & Srasra, E. (2017). Acid-base properties of pillared interlayered clays with single and mixed Zr-Al oxide pillars prepared from Tunisian-interstratified illite-smectite. Arabian Journal of Chemistry, 10(8), 1175-1183. https://doi.org/10.1016/j.arabjc.2014.07.004

  • Muñoz-Rujas, N., Bazile, J. P., Aguilar, F., Galliero, G., Montero, E., & Daridon, J. L. (2017). Speed of sound, density and derivative properties of diisopropyl ether under high pressure. Fluid Phase Equilibria, 449, 148-155. https://doi.org/10.1016/j.fluid.2017.06.024

  • Ouchabi, M., Baalala, M., Elaissi, A., & Bensitel, M. (2016). Effect of calcination temperature on the structure of copper orthophosphates and their catalytic activity in the decomposition of 2-propanol. Journal of Materials and Environmental Science, 7(4), 1417-1424.

  • Pyen, S., Hong, E., Shin, M., Suh, Y. W., & Shin, C. H. (2018). Acidity of co-precipitated SiO2-ZrO2 mixed oxides in the acid-catalyzed dehydrations of iso-propanol and formic acid. Molecular Catalysis, 448, 71-77. https://doi.org/10.1016/j.mcat.2018.01.031

  • Pеtrоvić, Z., Dugić, P., Аlеksić, V., Vојislаv, S., Sаdаdinоvić, Ј., Мićić, V., & Kljajić, N. (2014). Composition, structure and textural characteristics of domestic acid activated bentonite. Contemporary Materials, 1(5), 133-139. https://doi.org/10.7251/cm.v1i5.1509

  • Rinaldi, N., & Kristiani, A. (2017). Physicochemical of pillared clays prepared by several metal oxides. AIP Conference Proceedings, 1823(1), Article 020063. https://doi.org/10.1063/1.4978136

  • Ruddy, D. A., Schaidle, J. A., Ferrell, J. R., Wang, J., Moens, L., & Hensley, J. E. (2014). Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chemistry, 16(2), 454-490. https://doi.org/10.1039/c3gc41354c

  • Said, A. E. A. A., El-Wahab, M. M. A., & El-Aal, M. A. (2014). The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether. Journal of Molecular Catalysis A: Chemical, 394, 40-47. https://doi.org/10.1016/j.molcata.2014.06.041

  • Shao, H., Gao, W., Zhang, D., Liu, Z., & Li, W. (2013). Study on treatment effect of three types of industrial wastewater by ammonium molybdate-modified bentonite. Advanced Materials Research, 634, 286-291. https://doi.org/10.4028/www.scientific.net/AMR.634-638.286

  • Sun, Y., Jiu, H., Tian, J., Zhang, L., Han, T., Guo, F., & Qiu, M. (2020). Preparation of molybdenum phosphide nanoparticles/nitrogen-phosphorus co-doped carbon nanosheet composites for efficient hydrogen evolution reaction. Journal of Solid State Chemistry, 284, Article 121182. https://doi.org/10.1016/j.jssc.2020.121182

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117

  • Totong, S., Daorattanachai, P., Laosiripojana, N., & Idem, R. (2020). Catalytic depolymerization of alkaline lignin to value-added phenolic-based compounds over Ni/CeO2-ZrO2 catalyst synthesized with a one-step chemical reduction of Ni species using NaBH4 as the reducing agent. Fuel Processing Technology, 198, Article 106248. https://doi.org/10.1016/j.fuproc.2019.106248

  • Uyumaz, A., Aydoğan, B., Calam, A., Aksoy, F., & Yılmaz, E. (2020). The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine. Fuel, 265, Article 116919. https://doi.org/10.1016/j.fuel.2019.116919

  • Vifttaria, M., Nurhayati, N., & Anita, S. (2019). Surface acidity of sulfuric acid activated maredan clay catalysts with Boehm titration method and pyridine adsorption-FTIR. Journal of Physics: Conference Series, 1351(1), Article 012040. https://doi.org/10.1088/1742-6596/1351/1/012040

  • Wang, C., Jia, M., Bai, Z., Shi, M., Chen, X., Fan, J., & Dai, F. (2020). The separation of isopropyl alcohol from diisopropyl ether system using glycols: Phase equilibrium and rigorous correlation. Journal of Chemical Thermodynamics, 150, Article 106230. https://doi.org/10.1016/j.jct.2020.106230

  • Wu, Z., Song, M., Zhang, Z., Wang, J., & Liu, X. (2019). Various strategies to tune the electrocatalytic performance of molybdenum phosphide supported on reduced graphene oxide for hydrogen evolution reaction. Journal of Colloid and Interface Science, 536, 638-645. https://doi.org/10.1016/j.jcis.2018.10.068

  • Zaghouane-Boudiaf, H., Boutahala, M., Sahnoun, S., Tiar, C., & Gomri, F. (2014). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol. Applied Clay Science, 90, 81-87. https://doi.org/10.1016/j.clay.2013.12.030

  • Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Combustion, performance and emission characteristics of a di diesel engine fueled with ethanol-biodiesel blends. Fuel, 90(5), 1743-1750. https://doi.org/10.1016/j.fuel.2011.01.024

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3265-2021

Download Full Article PDF

Share this article

Recent Articles