PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-2904-2023

 

Evaluating the Performance of Alternate Wetting and Drying Irrigation Technology: An On-farm Rice Case Study in An Giang Province, the Mekong Delta of Vietnam

Nha Van Duong, Van Huynh Thanh Pham, Hue Thi Le, Sang Thanh Nguyen and Duc Ngoc Huynh

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.47.3.02

Keywords: Alternate wetting and drying technology, continuous flooding, rice yield, the Mekong Delta, Vietnam, water productivity

Published: 2024-07-22

Alternate wetting and drying irrigation (AWD) is a promising technique that has been tried across Southeast Asia to reduce water consumption and methane emissions in irrigated rice cultivation. The study conducted in the upper Vietnamese Mekong Delta compared the effectiveness of plant growth, yield components, and yield under three different water application regimes: the treatments of community AWD (AWD_C), household individually (AWD_H), and continuous flooding (CF) with the expectation to explore the ability to use water effectively in rice cultivation. The results showed no significant difference in water use between the three treatments. However, there was a considerable difference in coefficient of variation value (CV); the CV value of the water column in the AWD_C (1.32%) was a significant difference from that of AWD_H (0.87%) and CF (0.89%). The mean chlorophyll content, the yield, and the weight of 1,000 grains of the AWD_H treatment were significantly higher than that of the other two treatments. In another aspect, the water productivity of the AWD_H treatment was the highest (0.66 kg/m3), a statistically significant difference compared to the AWD_C and CF (0.37; 0.33 kg/m3). In conclusion, the AWD_H shows efficiency in leaf chlorophyll content, 1,000-grain weight, yield, and water productivity. The AWD_C is inferior to the AWD_H due to the large variation of field elevation. It is noted that field elevation is critical to the technique’s success in being applied on a large scale.

  • Adounkpe, J., Ahoudji, O., & Sinsin, B. (2021). Assessment of the contribution of flooded rice cultivation systems to methane emissions in the Lower Ouémé Valley, in Benin Republic. Journal of Agricultural Chemistry and Environment, 10, 327-344. https://doi.org/10.4236/jacen.2021.103021

  • Allen, J. M., & Sander, B. O. (2019). The diverse benefits of alternate wetting and drying (AWD). International Rice Research Institute.

  • Arunrat, N., Sereenonchai, S., & Pumijumnong, N. (2018). On-farm evaluation of the potential use of greenhouse gas mitigation techniques for rice cultivation: A case study in Thailand. Climate, 6(2), 36. https://doi.org/10.3390/cli6020036

  • Boretti, A. (2020). Implications on food production of the changing water cycle in the Vietnamese Mekong Delta. Global Ecology and Conservation, 22, e00989. https://doi.org/10.1016/j.gecco.2020.e00989

  • Bouman, B. (2009). How much water does rice use? Management, 69(2), 115-133.

  • Chapagain, T., & Yamaji, E. (2010). The effects of irrigation method, age of seedling and spacing on crop performance, productivity, and water-wise rice production in Japan. Paddy and Water Environment, 8, 81-90. https://doi.org/10.1007/s10333-009-0187-5

  • Dhindsa, H. S., Sharma, R. D., & Kumar, R. (2016). Role of fly ash in improving soil physical properties and yield of wheat (Triticum aestivum). Agricultural Science Digest- A Research Journal, 36(2), 97-101. https://doi.org/10.18805/asd.v36i2.10626

  • Đông, N. M., Khôi, C. M., Quí, N. V., & Giang, N. Đ. C. (2018). Ảnh hưởng của biện pháp tưới khô ngập luân phiên đến khả năng cung cấp đạm trong đất và năng suất lúa tại huyện Hòa Bình tỉnh Bạc Liêu [Effects of alternate flooded dry irrigation on soil nitrogen supply and rice yield in Hoa Binh district, Bac Lieu province]. Tạp chí Khoa học Trường Đại học Cần Thơ, 54(7B), 70-78. https://doi.org/10.22144/ctu.jvn.2018.142

  • Huệ, N. T., Trịnh, M. V., Quỳnh, V. D., Thành, P. H., Sander, B. O., Leo, P., & Nga, P. T. T. (2016). Đánh giá sự phù hợp của kỹ thuật tưới ướt khô xen kẽ (AWD) trong canh tác lúa nước ở Việt Nam [Assessed the suitable of alternate wetting and drying (AWD) technology in rice cultivation in Vietnam]. https://www.thuvientailieu.vn/tai-lieu/danh-gia-su-phu-hop-cua-ky-thuat-tuoi-uot-kho-xen-ke-awd-trong-canh-tac-lua-nuoc-o-viet-nam-64727/

  • Ilahi, W. F. F., Hassan, N. H. A., Che’Ya, N. N., Ismail, M. R., Berahim, Z., Zakaria, N. I., & Omar, M. H. (2022). Alternate wetting and drying (AWD) on rice irrigation. Pertanika Journal of Tropical Agricultural Science, 45(3), 649-661. https://doi.org/10.47836/pjtas.45.3.07

  • Islam, M. S., Bhuiya, M. S. U., Rahman, M. S., & Hussain, M. M. (2009). Evaluation of SPAD and LCC based nitrogen management in rice (Oryza sativa L.). Bangladesh Journal of Agricultural Research, 34(4), 661-672. https://doi.org/10.3329/bjar.v34i4.5841

  • Kumar, K. A., & Rajitha, G. (2019). Alternate wetting and drying (AWD) irrigation – A smart water saving technology for rice: A review. International Journal of Current Microbiology and Applied Sciences, 8(3), 2561–2571. https://doi.org/10.20546/ijcmas.2019.803.304

  • Lampayan, R. M., Rejesus, R. M., Singleton, G. R., & Bouman, B. A. M. (2015). Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170, 95–108. https://doi.org/10.1016/j.fcr.2014.10.013

  • Mboyerwa, P. A., Kibret, K., Mtakwa, P. W., & Aschalew, A. (2021). Evaluation of growth, yield, and water productivity of paddy rice with water-saving irrigation and optimization of nitrogen fertilization. Agronomy, 11(8), 1629. https://doi.org/10.3390/agronomy11081629

  • Nhẫn, P. P., Quí, C. N., Hữu, T. P., Hòa, L. V., Mcdonald, B., & Tường, T. P. (2013). Ảnh hưởng của kỹ thuật tưới ngập khô xen kẽ, phương thức gieo trồng, giảm phân lân lên sinh trưởng và năng suất lúa OM5451 vụ Đông Xuân 2011-2012 [Effects of alternate wetting and drying irrigation, crop establishment methods, and reduced phosphorous]. Tạp chí Khoa học Trường Đại học Cần Thơ, 28, 103-111.

  • Palis, F., Hossain, M., Bouman, B., Cenas, P., Lampayan, R., Lactaoen, A. T., Norte, T., Vicmudo, V. R., Castillo, G. T., Toriyama, K., Heong, K., & Hardy, B. (2005). A farmer participatory approach in the adaptation and adoption of controlled irrigation for saving water: A case study in Canarem, Victoria, Tarlac, Philippines. In The Proceeding of the World Rice Research Conference (pp. 397- 401). International Rice Research Institute.

  • Prathap, V., Ali, K., Singh, A., Vishwakarma, C., Krishnan, V., Chinnusamy, V., & Tyagi, A. (2019). Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry, 142, 440–451. https://doi.org/10.1016/j.plaphy.2019.07.027

  • Quybh, V. D., & Sander, B. O. (2015). Applying and scaling up alternate wetting and drying technology for paddy rice in the Mekong River Delta. https://core.ac.uk/download/pdf/132677263.pdf

  • Singh, S., Mohanty, D. S., Sahu, M., Bhaskar, N., & Verma, B. (2020). Evaluation of SPAD meter values for estimating rice nitrogen status. International Journal of Chemical Studies, 8(4), 1-5. https://doi.org/10.22271/chemi.2020.v8.i4a.9947

  • Smedley, R. E. (2017). Avian diversity of rice fields in Southeast Asia [Doctoral dissertation, University of Reading]. Central Archive at the University of https://centaur.reading.ac.uk/74827/

  • Suresh, M., Balaguravaiah, D., Jayasree, G., & Balachennaiah, Y. (2017). Relation between leaf N content, LCC, and SPAD values on yield in rice (Oryza sativa L.). International Journal of Current Microbiology and Applied, 4, 30-36.

  • Tín, H. Q., Trang, T. T. H., Bình, V. V., Tính, T. K., & Sánh, N. V., (2015). Ảnh hưởng của kỹ thuật tưới đến năng suất và phát thải methane (CH4) trong sản xuất lúa tại Gò Công Tây-Tiền Giang [Effects of irrigation techniques on yield and methane (CH4) emissions in rice production in Go Cong Tay-Tien Giang]. Tạp chí Khoa học Trường Đại học Cần Thơ, 38(2), 55-63.

  • Tirol-Padre, A., Minamikawa, K., Tokida, T., Wassmann, R., & Yagi, K. (2018). Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: A synthesis. Soil Science and Plant Nutrition, 64(1), 2–13. https://doi.org/10.1080/00380768.2017.1409602

  • Tivet, F., & Boulakia, S. (2017). Climate smart rice cropping systems in Vietnam: State of knowledge and prospects. The French Agricultural Research Centre for International Development (CIRAD).

  • Ullah, H., & Datta, A. (2018). Effect of water-saving technologies on growth, yield, and water-saving potential of lowland rice. International Journal of Technology, 9(7), 1375–1383. https://doi.org/10.14716/ijtech.v9i7.1666

  • World Bank. (2022). Vietnam country climate and development report. WB. https://doi.org/10.1596/37618

  • Yamaguchi, T., Luu, M. T., Minamikawa, K., & Yokoyama, S. (2016). Alternate wetting and drying (AWD) irrigation technology uptake in rice paddies of the Mekong Delta, Vietnam: Relationship between local conditions and the practiced technology. Asian and African Area Studies, 15(2), 234–256. https://doi.org/10.14956/asafas.15.234

  • Yamaguchi, T., Luu, M. T., Minamikawa, K., & Yokoyama, S. (2017). Compatibility of alternate wetting and drying irrigation with local agriculture in An Giang Province, Mekong Delta, Vietnam. Tropical Agriculture and Development, 61(3), 117-127. https://doi.org/10.11248/jsta.61.117

  • Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9, 3742. https://doi.org/10.1038/s41598-019-40161-0

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2904-2023

Download Full Article PDF

Share this article

Recent Articles