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ABSTRACT

Managing water resources in urban areas is relatively expensive due to the costs of 
electricity and water distribution from wells and water companies. Therefore, water resource 
management for urban agricultural purposes needs to be made efficient, such as through 
smart irrigation technologies, one of which is the drip irrigation system that engages soil 
moisture sensors and the Internet of Things (IoT) to control the amount of distributed 
water. This study aims to apply and evaluate the performance of a drip irrigation system 
based on soil moisture sensors and IoT in urban agriculture. The results showed that the 
distribution uniformity in the system was identified at fair levels, with a Coefficient of 
Uniformity (CU) of 90.15% and 86.58%, respectively. Furthermore, our study also found 
that the IoT-assisted drip irrigation system that engaged a Deep Neural Networks (DNN) 
model to meet the water requirement led to better peanut yield than the irrigation system 
based on soil moisture as a control.

Keywords: Coefficient of uniformity, drip irrigation, IoT, soil moisture

INTRODUCTION

Overpopulat ion in urban areas has 
increased the need for housing, employment 
opportunities, water, and food resources. 
Water and food resources are strongly 
related to basic needs in that food from 
the agricultural sector largely relies on 
the availability of water resources. This 
becomes even more critical for urban 
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agriculture since it depends on wells and water companies. Inefficient management of 
water resources will increase the costs of living due to the higher usage of electricity to 
extract and distribute water.

Smart irrigation is one solution for regulating and monitoring agricultural irrigation 
to maintain the efficient use of water resources and subsequently improve farmer’s 
economy (Jaafar & Kharroubi, 2021). Therefore, smart irrigation technology has become 
a decent complement to urban agriculture, as indicated by improved efficiency in water 
management (Gimpel et al., 2021; Kullu et al., 2020; Mason et al., 2019; Quimbita et 
al., 2022). Previous work has confirmed that the technology has been widely applied to 
drip irrigation in distributing water and has, in turn, saved water by 48% compared to 
traditional irrigation systems (Jaafar & Kharroubi, 2021). Other research results also show 
that the drip irrigation system increased the efficiency of water usage by 36% compared 
to the border irrigation system (Y. Wang et al., 2021). Simply put, drip irrigation can be 
a decent choice for the most efficient irrigation despite limited water resources (Zahid 
et al., 2020).

In general, using smart irrigation can increase the efficiency of water distribution to 
plants. However, its use in urban agriculture needs to be studied further to determine the 
efficiency level in using water resources, especially in drip irrigation systems. The selection 
of the appropriate microcontroller and sensors is decisive in the efficiency of irrigation water 
distribution. Smart irrigation systems based on soil moisture controllers and those based 
on the Internet of Things (IoT) adapted to plant evapotranspiration (ETc) are alternative 
smart irrigation systems in urban agriculture. These two smart irrigation systems need to 
be studied to determine the efficiency level of water distribution and its effect on plant 
growth. This IoT-based smart irrigation system utilizes temperature (T) and air humidity 
(RH) data on agricultural land to predict evapotranspiration so that the distribution of 
irrigation water is adjusted to the amount of evotranspired water.

Smart irrigation utilizes microcontrollers and sensors as control systems, including 
NodeMCU ESP8266, ESP32, and Arduino. Soil moisture sensors are often used to monitor 
soil water and      increase water management efficiency (Ferrarezi et al., 2020). Meanwhile, 
NodeMCU helps to monitor and control irrigation with the aid of IoT by engaging Blynk, 
telegram, and other applications from a distance. NodeMCU has been widely used for IoT-
assisted irrigation research (Rani et al., 2022). Likewise, Arduino is often used in automatic 
irrigation control based on soil water content detected by soil moisture sensors. When the 
water content reaches a predetermined minimum or maximum limit, the microcontroller 
triggers the relay to activate the drip irrigation system even without data on plant water 
requirements. On the other hand, an IoT-assisted irrigation system needs data on crop water 
requirements as a reference for deciding the volume and duration of water distribution. 
The data are produced by calculating water requirements using trained and tested DNN 
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models to reach exemplary reliability and accuracy. The present study was projected to 
evaluate and apply a drip irrigation system based on soil moisture sensors and IoT in an 
urban agricultural setting.     

MATERIALS AND METHODS

Study Site

The research examined peanut growth as sample plants at the University of Jember, East 
Java, Indonesia, from October 2022 to January 2023. The university is located at -8.16346o 
and 113.71305o and is characterized by a tropical climate with two seasons: dry and rainy. 
The dry season occurs from June to October, while the rainy season occurs from November 
to May.

Dataset

This study examines the use of intelligent irrigation systems in conditions of limited water 
resources, especially in the dry season. High temperatures and low air humidity during the 
dry season greatly influence the level of plant evapotranspiration, thus affecting the water 
requirements of plants. Therefore, IoT-based temperature (T) and air humidity (RH) data 
collection was carried out to monitor the temperature and RH conditions at the research site      
in real time. Next, TMean and RHMean data for 4 hours for 7 days were used as input 
data for the DNN-based evapotranspiration prediction model. Previous research shows that 
DNN-based evapotranspiration predictions are accurate with TMean and RHMean input 
data of 4 hours duration (Suhardi et al., 2023). Thus, the IoT-based smart irrigation system 
was carried out every 7 days based on the DNN model output. On the other hand, a smart 
irrigation system based on soil moisture sensors was also used to control the distribution 
of irrigation water to plants. The volume of water distributed to plants, plant height and 
plant canopy diameter were recorded periodically. 

This study was carried out on two demonstration plots measuring 1m x 1m in a 
greenhouse. The distance between peanuts in each plot was 25 cm x 25 cm with the following 
drip irrigation systems. The first system was a drip irrigation system controlled by an Arduino 
Uno microcontroller based on a soil moisture sensor with a pump control that started when 
water content reached 17%, and the pump stopped at >30% water content. The other was a 
drip irrigation system using NodeMCU ESP8266 with Blynk to control the pump to meet 
water requirements. The irrigation was performed every 7 days with the amount of water 
emitted following the DNN-based ETo and Kc prediction model. Pipes were installed on the 
plot to channel water through each emitter around the peanut roots (Figure 1).

The reservoir’s water level was monitored to determine the volume of water distributed 
through the system. Furthermore, the height and diameter of the peanut canopy were also 
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observed at the initial crop development and mid-season stages. The cost of this IoT-assisted 
irrigation was fairly affordable at US$289.00 (Table 1).  

As seen in Figure 1, the soil moisture sensor is placed 10 cm from the plant stem and 
is responsible for delivering data to the microcontroller. At ≥ 30% soil moisture content, 
the relay turns off the system, and it will be active when the water content is ≤ 17%. The 
IoT-assisted system uses the Blynk by pressing the switch button. When Blynk is activated 
via Smartphone, the NodeMCU ESP8266 microcontroller will control the relay to connect 
and disconnect the power line from a 220V AC source to the pump. Blynk determines this 

Table 1 
The list of development costs for the IoT-assisted system

Instruments Functions Cost (USD)
Bamboo, insect net, transparent wave 
fiber, plastic

Supporting plant cultivation to protect 
plants from pests

$ 195.00

IoT-assisted tools to measure 
temperature, RH, and soil water content 

Monitoring temperature, RH, and soil water 
content in demonstration plots

$ 16.00

Drip irrigation system Maintaining the drip system for the plants $ 78.00
Total $ 289.00  

Figure 1. The plan and design of the drip irrigation system
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mechanism when calculating crop water requirements. The instrument specification of the 
IoT-assisted system can be seen in Table 2.

Figure 2 shows two drip irrigation systems: a drip irrigation system based on a soil 
moisture sensor assisted by an Arduino Uno microcontroller and an IoT-assisted drip 
irrigation system with a NodeMCU microcontroller. The employment of these different 
microcontrollers was aimed at the ease of compiling the codes. Automatic drip irrigation 
systems based on soil moisture sensors with Arduino Uno have been widely used to ease 
programming code. However, this system is less effective because it requires a wireless 
transceiver module as a microcontroller and signal receiver. Likewise, adding a soil 
moisture sensor will make programming code more complex and affect the success rate 
and completion of the irrigation system. Coupled with Blynk, the NodeMCU Esp8266 
microcontroller is equipped with an onboard antenna, making accessing and programming 
the code more practical.  

Table 2
Specification of soil moisture sensor, water pump, Arduino Uno, and nodeMCU ESP8266

Instruments Specification
Soil moisture sensor Working Voltage: 3.3–5.5VDC; Output Voltage: 0–3.0VDC; Port: PH2.54–3P; 

Material: Plastic; Item size: 9.8 * 2.3 * 0.7cm (L * W * H); Item weight: Approx. 
9g/0.32oz; price: US$1.62.

Aquarium pump
Powerhead SP 1200

AC Power: 220–240 V; Frequency: 50/60 Hz; Max Rate: 1.000 L/H; Head Max: 1.0 
m;  Power: 7 Watt; Price: US $1.62.

Arduino Uno R3 Microcontroller: ATmega328; Operating Voltage: 5V; Input Voltage (recommended): 
7–12V; Input Voltage (limits): 6–20V; Digital I/O Pins: 14 (of which 6 provide 
PWM output); Analog Input Pins: 6;  DC Current per I/O Pin: 40 mA; DC Current 
for 3.3V Pin: 50 mA Flash; Memory: 32 KB; SRAM: 2 KB; EEPROM: 1 KB; Clock 
Speed: 16 MHz; Length: 68.6 mm Width: 53.4 mm; Price: US  $ 6.48.

NodeMCU ESP8266 Chip: ESP8266 (ESP-12E); Pin I/O digital: 11; Pin I/O analog: 1; Operating Voltage: 
3.3 V; Clock speed: 80Mhz/160Mhz; Flash: 4M USB; price: US $ 4.53

Figure 2. Block diagram of drip irrigation system

Soil moisture 
sensor

Power source

Liquid crystal 
display Power source

Relay module

Aquarium pump

Relay module

Aquarium pump

Blynk app
NodemCu 

8266

Block diagram of drip irrigation system using 
blynk app controller

Block diagram of drip irrigation system using soil 
moisture sensor controller

Arduino 
Uno
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Coefficient of Uniformity (CU) Analysis

Drip irrigation is a well-known technology that reduces water consumption in the event 
of limited water resources while enabling proper plant growth (Kumar et al., 2022). Water 
distribution using drip irrigation technology utilizes hoses or pipes attached to a water 
tank with specific management to allow a constant water flow. It is necessary to perform 
a distribution uniformity test to maintain an even output, as this helps to determine the 
feasibility of system installation (Chaer et al., 2016; Mohamed et al., 2019). The distribution 
uniformity is considered very good when CU is over 90% (Henrique & França, 2022). 
CU ranging from 80%–90% corresponds to a good rate, while any lower rates between 
70%–80% are classified under fair CU, and poor CU ranges between 60%–70% (Darimani 
et al., 2021). Researchers have widely used CU as a parameter to estimate the uniformity 
of drip irrigation (Al-Mefleh et al., 2021; Henrique & França, 2022; C. Liu et al., 2022). 
CU can be calculated using Equation 1.

                𝐶𝐶𝐶𝐶 = 100 �1 −
∑𝑁𝑁𝑖𝑖=1 |𝑥𝑥𝑖𝑖−𝑥𝑥|

∑𝑁𝑁𝑖𝑖=1 𝑥𝑥𝑖𝑖
�                                                       [1]

Where: Cu: coefficient of uniformity in drip irrigation (%); xi : average volume of water 
of the ith container (ml); and x: average volume of water (ml) 

Crop Evapotranspiration (ETc) Analysis

The crop evapotranspiration (ETc) is obtained by multiplying evapotranspiration (ETo) and 
plant coefficient (Kc) using Equation 2. However, the Kc value is calculated using Equation 
3 in conditions of limited water resources. Meanwhile, the Ke value is calculated using 
Equation 4, which is converted from the fraction of vegetation cover (Fc) value (Zhang 
et al., 2019; T. Wang et al., 2021). Fc value based on FAO is between 0–0.1 at the initial 
stage, 0.1–0.8 at the crop development stage, 0.8–1 at the mid-season stage, and 0.8–0.2 
at the late season stage. The present study measured the Kcb rate for the peanut samples 
by using the DNN model, as shown in Figure 3.

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐾𝐾𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸                                             (2) 

𝐾𝐾𝐸𝐸 = 𝐾𝐾𝐸𝐸𝐾𝐾 + 𝐾𝐾𝐾𝐾                                                (3) 

𝐾𝐾𝐾𝐾 = 0.9 ∗ (1 − 𝐹𝐹𝐸𝐸)    

       [2]𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐾𝐾𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸                                             (2) 

𝐾𝐾𝐸𝐸 = 𝐾𝐾𝐸𝐸𝐾𝐾 + 𝐾𝐾𝐾𝐾                                                (3) 

𝐾𝐾𝐾𝐾 = 0.9 ∗ (1 − 𝐹𝐹𝐸𝐸)    

        [3]
𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐾𝐾𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸                                             (2) 

𝐾𝐾𝐸𝐸 = 𝐾𝐾𝐸𝐸𝐾𝐾 + 𝐾𝐾𝐾𝐾                                                (3) 

𝐾𝐾𝐾𝐾 = 0.9 ∗ (1 − 𝐹𝐹𝐸𝐸)           [4]

The site’s ETo rate was examined using the DNN model based on Tmean and 
RHmean resulting from 4 hours of observation (Figure 4). Meanwhile, the daily Tmean 
and RHmean are the conversion result of the 4-hour Tmean and RHmean observations 
(Figure 5). The ETo value was calculated every 7 days as a reference for managing the 
irrigation on day 8. Next, the aggregate ETo rate for 7 days was multiplied by Kc. The 
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Figure 5. Daily RHmean and Tmean across DAPs

Figure 3. Value of  Ke, Kcb, and Kc of peanuts

Figure 4. TMean and RHMean across stages
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findings show that the area of the demonstration plot positively relates to the amount of 
water given to the plants.

DNN and Artificial Neural Networks (ANN) employ similar learning principles: 
supervised, semi-supervised, and unsupervised. However, DNN has more than 3 hidden 
layers, where multiplying and adding weights, inputs, and biases occurs in each neuron 
in the hidden layer using Equation 5. This difference gives DNN better performance than 
ANN (Ali et al., 2022; Han et al., 2018; Irfan et al., 2021). Meanwhile, the results of the 
multiplication and addition in the previous hidden layers are used as the input for the next 
hidden layer (Figure 6). The DNN architecture in this research is shown in Figure 7.

𝑌𝑌 = ∅(∑𝑛𝑛
𝑖𝑖=1 𝑊𝑊𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖 + 𝐾𝐾)                                              [5]

Where: Y = Output; Ø = activation function; W = weights; Xi = input; and b=bias

Figure 7. DNN architecture

Figure 6. Calculation in DNN
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RESULTS AND DISCUSSION

The Calibration of Reservoir and Soil Moisture  

The drip irrigation system’s water tank as a reservoir was calibrated to monitor the water 
volume. The calibration was performed using a measuring cup to find a linear relationship 
between the water level and volume in the tank and to predict the water distribution in the 
system using a linear equation. The soil moisture sensor was used to detect soil moisture 
or soil water content indicated by an analog value after the soil moisture sensor had been 
connected to an Arduino microcontroller or ESP8266 NodeMCU. Therefore, the soil 
moisture sensor had to be calibrated to the soil water content using the gravimetric method 
to predict the linear equation, as shown in Figure 8.

Figure 8 shows two essential calibration results. The first result corresponds to a strong 
positive correlation in the water tank with the equation Y= 0.688x – 55.795 and R2 = 0.997. 
Afterward, this equation was used to calculate the volume of water distributed through the 
irrigation system. Another result confirmed a robust negative linear correlation between 
the soil moisture sensor’s analog output and the gravimetric method’s water content with 
the equation Y= - 0.1631x + 102.43 and R2 = 0.932. This linear equation was formulated 
in programming the code and uploaded to the Arduino Uno microcontroller to generate 
the data on soil water content. A drip irrigation system based on a soil moisture controller 
is expected to detect soil water content accurately. It is crucial to manipulate the duration 
of water distribution to meet predetermined water requirements.

Figure 8. Calibration of: (a) water tank (a); and (b) soil moisture sensor

(a) (b)

Coefficient of Uniformity (CU)

CU was measured on 2 different drip irrigation systems, namely drip irrigation systems 
with soil moisture controller and Blynk controller. The measurements were carried out 
at 9 emitter points with 2 repetitions (Table 3). Previous work demonstrated a decent CU 



2746 Pertanika J. Sci. & Technol. 32 (6): 2737 - 2751 (2024)

Suhardi, Bambang Marhaenanto and Bayu Taruna Widjaja Putra

of water discharge (Q) flowing through each emitter, as indicated by CU over 90% and 
between 80%–90% (Martinez et al., 2022). The present study also reported similar results 
where the drip irrigation system with soil moisture and Blynk controller generated CUs 
of 90.15% and 86.58%, respectively. This difference was presumed to occur due to the 
challenge of maintaining uniform water flow at each emitter.  

Table 3
The CU of drip irrigation system

Emitter Controller System
Soil moisture Blynk  

No. Q1 (ml/min) Q2 (ml/min) Q1 (ml/min) Q2 (ml/min)
1 77.14 62.96 50.00 51.85a
2 77.14 77.78 36.36 51.85
3 60.00 74.07 50.00 44.44
4 68.57 81.48 31.82 44.44
5 60.00 70.37 59.09 44.44
6 77.14 81.48 59.09 62.96
7 68.57 59.26 50.00 62.96
8 68.57 66.67 50.00 44.44
9 51.43 66.67 63.64 59.26
CU (%) 90.15 86.58
Drip Irrigation Discharge (ml/min) 624.66 458.33

Crop Evapotranspiration (ETc) 

Evapotranspiration (ETo) was examined using a DNN model with 4 hidden layers and 
2 input parameters, temperature (T) and air humidity (RH), logged for 7 days with a 
4-hour observation each day. Next, the ETo rate predicted by DNN (ETo-DNN) was 
multiplied by the Kc for peanuts to determine ETc and water requirements for each 
demonstration plot.

Figure 9 shows that the ETo rates in the initial and development phases are higher than 
the ETc rates. However, at the end of the development phase, the Kc rate reaches 1.09, 
which implies a higher ETc rate than ETo. Meanwhile, the ETo rate varies across phases, 
apparently because it was generated by the DNN model on different rates of temperature 
(T) and air humidity (RH) across days after planting (DAPs). It is congruent with previous 
studies stating that increasing temperature leads to higher ETo rates, while a negative 
correlation applies to RH (Dong et al., 2020; Zhu et al., 2022).

Crop Growth

Providing irrigation to plants will escalate plant growth and yields. It can only be achieved 
when water resources are used efficiently to maximize growth. In this regard, excessive or 
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insufficient water supply will adversely affect plant growth, so irrigation must be adjusted 
to the water required (Sezen et al., 2022).

The growth of peanuts was significantly influenced by the water availability in the 
soil, as shown by the growth of plant height and canopy area. The irrigation system also 
influenced plant growth due to differences in the volume of water emitted on plant surfaces. 
It can be seen in Figure 10, which shows that the irrigation system driven by a soil moisture 
sensor controller (SC) leads to a better height in the initial phase than the irrigation system 
with the Blynk controller (BC). However, in the development and mid-season phases, a 
higher water supply with BC results in better height than SC.

The canopy diameter increases in line with the increment of DAP, which affects the 
increasing evapotranspiration (Figure 10). It is also evidenced by the increasing water 
supply in each irrigation system from the initial phase to the mid-season phase. The figure 
also documents that the BC-based irrigation system generates an exemplary effect on plant 
height and canopy diameter due to the optimal water supply.

Yield

The use of AI-based analysis to generate ETc-DNN models helps to accurately determine 
the volume of water flow relative to crop water requirement, thus ensuring optimal 
photosynthesis, metabolism, and transportation of food materials from the roots to 
all parts of the plant. The results of the previous study also confirm a positive linear 

Figure 9. ETo and ETc rates for the peanut samples
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relationship between crop yields and crop 
water requirement, where appropriate water 
supply stimulates better harvest (Bennett & 
Harms, 2011; J. Liu et al., 2022). Figure 
11 shows higher peanut yield in a drip 
irrigation system that engages the AI-based 
analysis (ETc-DNN) to determine water 
requirement compared to another system 
assisted by a soil moisture sensor controller 
(SC), which determines soil water content 
around plant roots (ETc-SC).

Figure 10. The height and diameter of the peanut canopy

Figure 11. Peanut yield in irrigation systems based 
on soil moisture, blynk, and timer controllers

CONCLUSION

This study has corroborated that the IoT-assisted drip irrigation system with AI-based 
analysis (ETc-DNN) has helped meet crop water requirements better than           ETc-SC. 
The system has also been influential in attaining higher peanut yields than a drip irrigation 
system with a soil moisture sensor controller (SC). Another advantage of using an IoT-
assisted irrigation system with AI-based analysis is better efficiency in water distribution 
based on the plant’s water needs. Thus, the plants’ height and canopy area were improved, 
and their growth and yields improved. 
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