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ABSTRACT

Urban sprawling caused by industrial and economic growth has significantly affected land 
use and land cover (LULC). Using satellite imagery for real-time examination in Kuantan 
has become exceedingly expensive due to the scarcity and obsolescence of real-time LULC 
data. With the advent of remote sensing and geographical information systems, LULC 
change assessment is feasible. A quantitative assessment of image classification schemes 
(supervised classification using maximum likelihood and deep learning classification 
using random forest) was examined using 2022 Sentinel-2 satellite imagery to measure 
its performance. Kappa coefficient and overall accuracy were used to determine the 
classification accuracy. Then, 32 years of LULC changes in Kuantan were investigated 
using Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 based on the best classifier.   Random 
forest classification outperformed maximum likelihood classification with an overall 

accuracy of 85% compared to 92.8%. The 
findings also revealed that urbanisation is the 
main factor contributing to land changes in 
Kuantan, with a 32% increase in the build-
up region and 32% in forest degradation. 
Despite the subtle and extremely dynamic 
connection between ecosystems, resources, 
and settlement, these LULC changes can be 
depicted using satellite imagery. With the 
precision of using a suitable classification 
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scheme based on comprehensive, accurate and precise LULC maps can be generated, 
capturing the essence of spatial dynamics, especially in under-monitored basins. This study 
provides an overview of the current situation of LULC changes in Kuantan, along with 
the driving factors that can help the authorities promote sustainable development goals.

Keywords: Geographical information system (GIS), image classification, LULC changes, maximum likelihood, 
random forest

INTRODUCTION

Rapid spawning of population growth significantly affected the LULC rates, especially 
with the economic and industrial revolution over the past few years (Talukdar et al., 
2020). LULC can act as an efficient method to measure land transformation for land use 
management. With temporal information used in land use maps, a better understanding 
of dynamic LULC changes to serve different purposes such as urban and town planning, 
ecosystem and environmental assessment, hazard monitoring and management, natural 
resources exploration and management, and soil erosion and desertification detection is 
significant, especially for water resource management. Considering global dynamics and 
the response to environmental and socioeconomic factors, land use and land cover change 
is an essential subject. 

Conventionally, Land Use and Land Cover (LULC) changes are determined 
through field surveys with a manual classification that requires more time and energy. It 
consequently causes data redundancy due to constant changes in land use in a short period. 
Besides, LULC is important in flood risk assessment, as well as hydrology, meteorology, 
and geomorphology. Different LULC profiles provide varying surface water retention 
values, affecting surface runoff. The scarcity of updated LULC data has contributed to 
increased flooding incidents (Zaidi et al., 2014). High costs, substantial time investment, 
and considerable human resources often characterise traditional methods of studying LULC. 
It underscores the growing demand for more convenient, user-friendly, and innovative 
approaches for identifying and analysing LULC, particularly in regions such as Kuantan. 
While some governmental agencies and local authorities provide LULC data, accessing 
this information can often prove to be a significant challenge. It tends to be expensive and 
difficult to obtain, frequently requiring extensive paperwork and time to access. Another 
major issue is the lack of updated information. The data these entities provide is often 
outdated, failing to reflect the current state of land use and land cover in the region. This 
situation further amplifies the need to develop and implement more efficient and accessible 
LULC study methods. 

In situations where updated and accurate LULC data is lacking, access to remote 
sensing technology becomes crucial as it can provide this data. Advancement of data 
acquisition through online databases and advanced equipment based on remote sensing 
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technology such as hyperspectral satellites, airborne, light detection and ranging (LIDAR), 
and unmanned aerial vehicle (UAV) has helped in providing a relatively good and accurate 
data (Gaur & Singh, 2023). These high-accuracy and low-error data tend to be expensive 
and difficult to obtain. In contrast, lower-quality data is freely accessible and requires less 
computation time. The advent of open-source satellite imagery, like Sentinel-2 and Landsat, 
has expanded its technology to meet the needs of various fields. The capacity of satellites 
to identify surface features and create classifications using different algorithmic approaches 
makes them ideal for LULC studies. Furthermore, the geographic information systems 
(GIS) technology has improved time and energy efficiency in surveying LULC analysis. 
Data acquisition is a critical component as it acts as a foundation for successful analysis 
and decision-making. These upgrades in remote sensing and GIS technology integration 
also enormously contribute when handling inaccessible and unavailable information in 
poorly gauged areas, such as disaster assessment, environmental monitoring, and urban 
management (Maryantika & Lin, 2017). LULC has also significantly helped provide 
mitigation solutions, policy-making decisions, and sustainable development (Isola et al., 
2023; Yulianto et al., 2020; Shahbudin et al., 2009). 

Land cover classification through remote sensing imagery analysis is associated with 
modification and spectral distinction based on each pixel to define the category. The 
techniques include supervised and unsupervised classifications with different computational 
algorithms (classifiers). However, the classification of satellite imagery for LULC changes 
studies can contain several obstacles. Despite the diverse acquisition periods, obtaining 
similar multi-temporal and spatial satellite image data sets involves extensive work. Other 
disturbances, such as atmospheric and radiometric interference, may necessitate extra care 
in image processing (Vicenteserrano et al., 2008). In this regard, advancement in the quality 
and quantity of algorithms and mathematical equations for image analysis and manipulation 
has enhanced the capability of extracting information for many applications (Abdullah et 
al., 2019). Artificial intelligence (AI) and machine learning have been used to integrate 
remote sensing and geospatial analysis and interpretation of Earth data in recent years (Lary 
et al., 2016). Among the best algorithms used include random forest (RF) (Abdullah et al., 
2019; Balha et al., 2021), support vector machine (SVM) (Balha et al., 2021), k-Nearest 
Neighbour Network (KNN) (Gondwe et al., 2021; Ngondo et al., 2021), Artificial Neural 
Network (ANN) (Saini & Rawat, 2023) and Dynamic Time Warping (DTW) (Viana et 
al., 2019). Given that all the approaches pose different outcomes and accuracy levels, the 
result highly depends on the training input and regression output. High training input and 
high regression value generate better classification. Additionally, quantitative measures 
of LULC mapping based on satellite observations through a machine learning algorithm 
have been proven efficient (Talkudar et al., 2020). It is important to note that each of these 
algorithms has unique strengths and application areas. Choosing the right algorithm is 
crucial to the success of any analytical project.  
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LULC generation can vary significantly based on software, data availability, 
study area, and project prerequisites. A pixel-based classification model can improve 
the classification of satellite imagery based on the training samples. As for ANN, the 
classification requires an enormous amount of quality data set and poses several problems, 
including potential overfitting without proper regularisation, computationally intensive 
and resource-consuming, and high sensitivity to input data quality and pre-processing. 
However, supervised classification through maximum likelihood (ML) is also considered 
an excellent parameter for obtaining good results (Nath et al., 2018; Geidam et al., 2020). 
The probability distribution based on the statistical model of normal distribution has 
made an ML classifier among the established classification functions (Shahbudin et al., 
2009; Seyam et al., 2023). This likelihood is calculated using the highest probability of a 
certain occurrence within the data. It is worth noting that this approach is grounded in the 
assumption of a normal distribution within each class. ML can also provide a consistent 
result that will eventually converge to the true value of the parameter (Gaur & Singh, 2023). 
Meanwhile, the classifier based on RF imputation compromises the decision tree from 
backscatter training variables to compute the land cover class of interest. It entails creating 
several decision trees from a provided training dataset and then producing output classes 
for each tree. Due to its robustness and efficiency, it has been deemed one of the best and 
most commonly used methods for classifying satellite imagery. This spatial analysis can 
provide significantly good results, especially in tropical and subtropical sites (Aja et al., 
2022; Abdullah et al., 2019). RF technique serves a relatively good accuracy value with 
acceptable results, outperforming other machine learning SVM, ANN, and KNN (Saini & 
Rawat, 2023). The RF algorithm is also considered a stable and consistent overall accuracy 
compared to ANN and SVM classifiers. 

Mapping LULC regularly with remote sensing data can provide insight into the 
environmental impact of human activities, especially regarding forest disturbances. 
Forests are among the primary land use categories that play an enormous role, especially 
in providing various resources for humankind. It helps to maintain the hydrological cycle 
and atmospheric temperature, reduce natural disaster impacts, and prevent global warming 
(Ngondo et al., 2021). Terrestrial forests near urbanised areas play significant roles in 
maintaining carbon flux. Over time, the depletion of total forest cover deteriorates the 
ecosystem as it causes loss of biodiversity and clean water, the emergence of zoonotic 
diseases and health issues, and environmental degradation such as floods, soil erosion, 
and heat island effects. Most of the forest in low-lying regions, like Kuantan, contains a 
collection of trees and shrubs that can withstand extreme conditions like high salinity, high 
temperature, and less humidity. In Malaysia, a total of 612580.11 ha of land use and land 
cover (LULC) area is defined as mangrove forest, with about 17% covering Peninsular 
Malaysia (Lokman, 2004). Due to rapid population and economic growth, climate 
change, and global warming, there have been significant shifts in forest distribution. This 
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necessitates improved analysis of LULC changes, especially in cities near high biodiversity 
and environmental ecosystems. 

There is a need for convenient and user-friendly methods to identify LULC changes 
in Kuantan that enable the efficient identification of forest distribution while minimising 
time, human resources, and cost. These LULC changes can be identified through satellite 
image classification, which describes the land uses. This study analysed LULC changes in 
Kuantan over 32 years (1994 to 2022) using Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 
satellite imagery. These varied satellite imageries were used following the need for more 
unavailability of data in a satellite. Variation in spatial resolution based on satellite imagery 
is less significant to affect the quality of analysis on primary output (Fisher et al., 2017). 
Most LULC classifications based on satellite imagery for change detection studies used 
more than two image satellites with more than 25 years of timeframe. Higher spectral 
imagery has many elements to be considered because of limitations in terms of cost, 
processing resources, and data accessibility. Moreover, a high spectral resolution image 
tends to sacrifice temporal resolution, which implies the frequency of available data in 
a single pass. The viability of a lower spectral with suitable pixel resolution imagery of 
Landsat and Sentinel imagery that are openly accessible and cost-efficient has contributed 
massive amounts of interest to the LULC study. Landsat 5 TM and Landsat 8 OLI have 
occupied the whole territory of the study area, so it is possible to conduct the study in 
the study area. However, for Sentinel-2 imagery, the study area of Kuantan required two 
different distinctive images despite the higher spatial resolution.

The objectives of this study are (1) to perform LULC classification based on the ML 
classifier and RF classifier and (2) to analyse the LULC changes in the city of Kuantan 
between 1994 and 2022 using the best classifier between ML and RF algorithm. A reliable 
and accurate classification based on remote sensing is expected to improve the LULC 
databases in Kuantan. The need for LULC as a baseline study for managing urban sprawling 
conservatively and comprehensively without damaging the natural ecosystem and habitat 
is highly significant, especially in cities in low-lying regions near the river mouth. These 
regions are exposed to various threats, from sea level rise, climate changes, global warming, 
and flooding, because of their highly sensitive ecology, which leads to societal vulnerability. 
Therefore, the study of LULC changes can effectively help in planning, managing, and 
monitoring the development of cities to ensure sustainable urban development is achieved.

METHODOLOGY

Study Area

This study focused on the LULC patterns in Kuantan (Figure 1), located on the latitude 
of 3° 48’ 27.72” N and longitude of 103° 19’ 33.60” E, east coast of Peninsular Malaysia. 
Kuantan is the capital city of Pahang and was originally dominated by natural forests along 
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the Kuantan River. Over time, the increasing demand for various industries has significantly 
changed the LULC. Following its location at the lower part of the Kuantan River, Kuantan 
is characterised by a high surface temperature with a low range for minimum and maximum 
temperature. It is also considered one of the largest cities on the East Coast of Peninsular 
Malaysia. Kuantan’s rapid urban development is mainly prompted by the government’s 
support through economic corridors, which has significantly influenced the LULC by 
expanding transportation facilities and physical infrastructure. As a result, highly rapid 
development has influenced the distribution of the environmental ecosystem.

Kuantan also has a unique community rich with values, culture, history, and economic 
power that contributes to a prosperous quality of life for its population. The local population 
was recorded at 548,014 people and is expected to increase significantly with 2.1% annual 
growth. Two of the major economic activities in Kuantan are tourism and industries. 
The emergence of the petrochemical, timber, and fishing industries has had a significant 
influence on the city’s population growth. Furthermore, the Special Economic Zone 
was introduced to catalyse the fast-tracking economic development on the East Coast, 
subsequently leading to a significant increase in employment opportunities. Consequently, 
there is a possibility of LULC due to the need to explore forests for civilisation.

The local weather in Kuantan has been almost uniform over the years. The area 
is exposed to the Northeast monsoon that annually happens from early November to 
March and eventually affects the wind flow patterns. During this period, the region is 

Figure 1. The study area of LULC Classification in Kuantan
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susceptible to flooding because the rainfall usually reaches the maximum from November 
to January, while the driest is usually between June and July. According to the Malaysian 
Meteorological Department, the average monthly rainfall in Kuantan is between 3000 mm 
and 3500 mm, which indicates high humidity. As the Kuantan is relatively located near the 
equator, the region receives an average of 6 hours of sunshine daily. Moreover, the study 
area also has a uniform temperature throughout the year with relatively small changes in 
annual variation.

Geographically, Kuantan is among the low-lying cities in Malaysia that are exposed to 
flooding threats. Rapid development because of increased population growth and extensive 
industrial development has contributed to increased flooding incidence in Kuantan in recent 
years. Significant changes in land cover over the past few years have promoted the demand 
for flood hazard assessment. Furthermore, Kuantan is exposed to the threat of flooding 
due to its proximity to the estuary and low-lying coastal region, especially during heavy 
rainfall in the monsoon season. Historically, flooding has happened annually but hardly hit 
in 1926, 1967, 1999, 2001, 2007, 2011, and 2013, where it caused most areas in Kuantan 

Figure 2. Flow chart of the study for LULC 
classification in Kuantan
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City to be submerged, resulting in significant 
damage and loss of life (Zaidi et al., 2014).

Data Acquisition and Preparation

Figure 2 illustrates the processes involved 
in the implementation of this study. Five 
satellite imagery data were obtained from 
the United States Geological Survey 
(USGS) website (Table 1). Between 1994 
and 2002, Landsat 5 TM was the preferred 
imaging satellite; however, it was replaced 
by Landsat 8 OLI satellite imagery with a 
resolution of 30 metres in 2013 and 2017, 
followed by 10-metre resolution Sentinel-2 
satellite imagery in 2022. This selection of 
satellite images was based on the quality 
of the images, the availability of satellite 
images with less cloud coverage, and the 
absence of line stripping or shot noise. All 
three satellites provide identical optical 
images with non-false colour composites. 
However, Sentinel and Landsat images have 
slightly different spectral band indications. 



2706 Pertanika J. Sci. & Technol. 32 (6): 2699 - 2722 (2024)

Muhammad Amiruddin Zulkifli, Jacqueline Isabella Anak Gisen, Syarifuddin Misbari, Shairul Rohaziawati Samat and Qian Yu

A relatively high sensor of Sentinel-2 provides a good spectral indication for detailed 
vegetation analysis compared to Landsat 8. 

Once the satellite images were obtained, radiometric correction techniques were 
applied. For Landsat 5 TM imagery, the sensors convert the data quantisation scale at an 
8-bit digital number (DN), equal to 256 greyness level. Then, the DN values were converted 
to radiance values using bias and gain values. Then, the radiance values were converted 
to a Top-of-Atmosphere (ToA) reflectance unit. Meanwhile, for Landsat 8 OLI, the data 
was rescaled to 16-bit DN values, equal to 65536 greyness level, which also required 
conversion from the DN value to the radiance value. Based on the radiance values, the data 
were converted to a ToA reflectance unit. As for Sentinel-2 imagery, the DN values were 
converted directly to the ToA reflectance unit. After radiometric correction, atmospheric 
correction through Dark Object Subtraction 1 (DOS1) was applied using the Sentinel 
Application Platform (SNAP) engine. Noise from atmospheric and spectral interference on 
satellite images was minimised through this process. Then, the satellite images underwent 
cloud removal through the threshold value of the reflectance range on the Near-Infrared 
band (NIR). Then, the masking process focuses on the region of interest (ROI) area after 
the image stacking from different bands is performed.

While Landsat imagery required a single satellite image, Sentinel-2 required two-
scene images to cover the study area. Therefore, image mosaicking was required for the 
prepossessing analysis. The characteristics of each pixel for image classification were 
identified based on the colour, shape, size, pattern, location, and DN associated with each 
object. The classification was performed with the help of spectral indexing on the satellite 
imagery to allow each class to be prominent compared to other classes. Subsequently, it 
will reduce the redundancy of pixel classification. The index-based technique was also 
utilised by manipulating the spectral properties of satellite imagery through the derivative 

Table 1
Satellite imagery used in the study for LULC classification

Data Type and Date Description Source
Landsat 5 TM
(1994, 2002)

The data was atmospherically corrected, and four visible and 
near-infrared bands were obtained: two short-wave infrared 
bands and a thermal infrared band. The spatial resolution of 
30-m, single scene data, Sun-synchronous

Google 
Earth Engine 
database—USGS

Landsat 8 OLI 
(2013, 2017)

The data was atmospherically corrected, and five visible and 
near-infrared bands, two short-wave infrared bands, and two 
thermal infrared bands. The spatial resolution of 30-m, single 
scene data, Sun-synchronous

Google 
Earth Engine 
database—USGS

Sentinel-2 
(2022)

The data was atmospherically and geographically corrected, 
and three visible bands, five near-infrared bands, four short-
wave infrared bands, and an ultra-blue band were obtained. The 
spatial resolution of 10-m, double scene data, Sun-synchronous

Google 
Earth Engine 
database—USGS



2707Pertanika J. Sci. & Technol. 32 (6): 2699 - 2722 (2024)

Land Use and Land Cover Changes for Under-monitored Basin

equations of Normalised Difference Built-up Index (NDBI) (Equation 1), Normalised 
Difference Vegetation Index (NDVI) (Equation 2), and Normalised Difference Water Index 
(NDWI) (Equation 3) for better visualisation.

NDBI =  SWIR −NIR
SWIR +NIR

        [1] 

NDVI =  NIR−RED
NIR +RED

         [2] 

NDWI =  GREEN −RED
GREEN +RED

  

 							       [1]NDBI =  SWIR −NIR
SWIR +NIR

        [1] 

NDVI =  NIR−RED
NIR +RED

         [2] 

NDWI =  GREEN −RED
GREEN +RED

  

 								        [2]

NDBI =  SWIR −NIR
SWIR +NIR

        [1] 

NDVI =  NIR−RED
NIR +RED

         [2] 

NDWI =  GREEN −RED
GREEN +RED

  							       [3]

Training Data Based on Field Data Survey

The satellite image was selected to complement the site investigation, where a set of 
training areas with a training-to-accuracy sample ratio of 4:1 was generated for each 
class. It adhered to the recommendation by Aja et al. (2022) to avoid any systematic 
error caused by redundant pixels for training and validation. A total of 2000 randomly 
selected training sample points were used, with 1600 points for training and 400 points for 
validation. These training data, consisting of positional coordinates and LULC information, 
were collected through a mixture of field measurements and Google Earth Engine. It is 
to ensure that the training data are correctly assigned as they reflect the characteristics of 
each classified object. Upon completing the image classification, 400 points were used for 
accuracy analysis. Some classes of LULC tend to have similar spectral properties and less 
heterogeneity, making LULC classification difficult to process. Therefore, several LULC 
classes were combined to represent a major class, as presented in Table 2.

Table 2
Description of LULC types for the study

ID Class LULC Types Description
1 Urbanisation/Build-up area Consists of all build-up regions, residential, industrial, commercial 

regions, villages, transportation, infrastructure, and buildings.
2 Vegetation Consists of mixed forest, dense forest, shrub and mangrove forest, 

and agriculture plants.
3 Water Body Consists of water bodies, including rivers, oceans, lakes, 

reservoirs, ponds, and others.
4 Barren Land Consists of less to no plantation with only soil exposed at the 

Earth's surface. 

Satellite Image Classifier Test

LULC Classification

For classifier testing, the satellite data of the year 2022 from Sentinel-2 was acquired 
from the USGS website and utilised for LULC mapping by employing consistent and 
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stable classification algorithms, which are RF and ML techniques. Equation 4 presents 
the mathematical representation of the RF algorithm, showcasing its function in reducing 
errors and improving efficiency. Meanwhile, the ML model is mathematically represented 
as L(θ∣x ), a function of the parameters (θ) and the observed data (x), as shown in Equations 
5 to 7. Here, θ denotes the model parameters that influence the final result. The observed 
data, labelled x, refers to the collected and analysed real data. For optimal classification, 
the parameters of θ are characterised by the mean (μ) and standard deviation (σ). The mean 
is the central value of a data set, providing an average point, while the standard deviation 
measures the data’s dispersion or variation.dispersion or variation. 

RF =  1 −  ∑ (Pi)2n
i=1    [4] 

𝐿𝐿(𝜇𝜇,𝜎𝜎|𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎2 𝑒𝑒

−�(𝑥𝑥−𝜇𝜇 )2
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n
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n
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Additionally, the QGIS applications and SNAP engine were applied. The RF algorithm 
was run using 100 trees based on 4 input features (Table 2) from 1600 points training 
dataset. As for ML, a classification based on normal estimation with 1600 points of training 
dataset was applied. 

Accuracy Analysis

The overall accuracy and Kappa coefficient were calculated using Equations 8 and 9. The 
training dataset (400 points) was undertaken in a specific area based on a random location. 
The Kappa coefficient (K) (Equation 7) and overall accuracy (OA) (Equation 8) analyses 
based on the confusion matrix were applied to conduct an accuracy analysis in determining 
the classification’s validity and reliability, where P0 indicates the relative probability of 
observed agreement while Pe indicates the hypothetical probability of chance of agreement. 

K =  p0−pe
1−pe

      [8] 

OA =  Number  of  correct  prediction
Number  of  total  prediction

× 100  

								        [8]K =  p0−pe
1−pe

      [8] 

OA =  Number  of  correct  prediction
Number  of  total  prediction

× 100  					     [9]

Time Series Comparison

Once the classification testing was done for the LULC map in 2022, LULC maps for 
1994, 2002, 2013, and 2017 were produced using the best image classifier. The highest 
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overall accuracy and kappa coefficient were the definitive indicators for selecting the best 
classifier to determine the LULC changes. A total of 5 LULC maps were constructed using 
computational analysis, Google Earth Engine, and field surveys in 1994, 2002, 2013, 2017, 
and 2022. The distribution area of each LULC class for 1994, 2002, 2013, 2017, and 2022 
was also calculated. This inconsistent interval of satellite images from 1994 to 2022 is 
due to the unavailability of good-quality satellites caused by high cloud cover and spectral 
noise in the study area. Sentinel and Landsat satellites provide the same optical sensor for 
non-false colour composite imagery, allowing for comparative analysis. A comparative 
analysis examined the effects of differing spatial and spectral resolutions. Sentinel-2 
appeared to offer superior technical satellite properties compared to the Landsat satellite. 
However, due to the higher quality of Landsat 9’s 16-bit radiometric resolution, compared to 
Sentinel-2’s 12-bit radiometric resolution, the accuracy of classification results was nearly 
identical. Hence, the same technique (normalised treatment) was used to compensate for 
these different resolutions. This distinction is necessary to identify the differential impacts 
on the results from the same approach. Moreover, resampling of the training for different 
approaches is not required in this context, as the technique acts equivalently to the same 
training sample.

RESULTS AND DISCUSSION

Training Classifier

LULC Classification

The supervised classification of the ML method was used to classify the LULC map 
(Figure 3). By using threshold probabilities to look at the binary profiles of individual 
pixels, it was possible to classify the data using the spectral band’s normal distribution 
and determine the statistics and odds for each class. Five classes were developed: water, 
urban area, vegetation, bare land, and an unnamed class. Due to the unknown parameters 
in the defective proportion, the normal distribution adopted in maximum livelihood, this 
unidentified class was established as a defective item. The LULC map based on the RF 
technique (Figure 4) was divided into four primary categories: water, urban area, vegetation, 
and barren terrain. This classification was done using a decision tree that included multiple 
regression and classification trees from a random subset of samples. Subsequently, the data 
from the ML tends to avoid misinterpretation compared to RF classification. 

Accuracy Assessment

A confusion matrix based on pixels was used to provide a statistically accurate 
assessment of both classifications. The accuracy achieved a 0.05 confidence interval 
for the statistically significant correlation of the two LULC classifications using ML 
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Figure 3. LULC map using ML algorithm in 2022

Figure 4. LULC map using RF algorithm in 2022
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and RF, which were significantly good at 92.8% and 85%, respectively (Tables 3 & 4). 
The large number of estimates in the training dataset caused the large differences in the 
classifier results between RF and ML classifications. RF classifiers can handle large-scale 
heterogeneous distributions and complex data with less data bias. A study by Talukdar et 
al. (2020) proved that LULC classification poses a significant result using an RF classifier. 
Lary et al. (2016) also found that RF classifiers can reduce classification bias compared 
to other classifiers. However, RF classification has certain problems with the initial 
variable biases and overfitting of the regression model. Misclassification and overlaps 
significantly influenced the accuracy of the classification (Saini & Rawat, 2023). The 
bias of the majority RF classification emerges from uneven classes in the training dataset. 
It can also be deduced that the RF classifier produced less overall accuracy compared 
to the ML classifier because of the quality of the training dataset. The training dataset 
for the classification was monitored in a highly dense area with various classifications 
summarised into four main classes. These available datasets might be insufficient for 
training the RF algorithm, limiting the variety of predictions.

The effectiveness of the RF classifier in handling highly heterogeneous features can 
be proven with a well-trained sample. Abdullah et al. (2019) showed that training dataset 
preparation is highly important in generating a good image classification. The authors also 
emphasised that the training dataset for the RF model is relatively sensitive to changes that 
can cause a biased result. Talukdar et al. (2020) further emphasised that the RF classifier 
can pose a good result when dealing with heterogeneous data containing various types of 
features. As for ML, the classification of the imaging satellite was relatively good since the 
data was derived from the normal distribution of the dataset, making the classifier suitable 
for a relatively immense dataset. Lower variance estimation affected the classifier’s ability 
to withstand a broad sample size, as a high sample size can produce less biased outcomes. 
Therefore, the data was consistent and almost identical to its actual value. 

Table 3
Area-based error matrix between LULC-based ML by 400 points

Training Data Set
Total

Classes Unclassified Water Urban Area Vegetation Barren Land

M
ax

im
um

lik
el

ih
oo

d

Water 0 28 0 0 0 28

Urban Area 5 1 161 4 0 171

Vegetation 3 0 6 163 0 172

Barren Land 4 0 4 2 19 29

Total 12 29 171 169 19 1
Overall Accuracy (Confident interval of 95%) 92.8
Kappa Hat Classification 0.85
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 Table 4
Area-based error matrix between LULC-based RF by 400 points 

Training Data Set Total
Classes Water Urban Area Vegetation Barren Land

R
an

do
m

 
Fo

re
st

Water 25 2 1 0 28
Urban Area 1 145 24 1 171
Vegetation 0 13 150 9 172
Barren Land 0 6 3 20 29

Total 26 166 178 30 400
Overall Accuracy (Confident interval of 95%) 85
Kappa Hat Classification 0.75

LULC Changes

LULC Changes Analysis

The classifier testing results indicate that classification using ML yields higher overall 
accuracy compared to RF. Therefore, the LULC changes for the years 1994, 2001, 2013, 
and 2017 were performed using the ML classifier. The results of the LULC classification 
for 1994, 2001, 2013, 2017, and 2022 are presented in Figures 6 to 10, respectively. The 
total coverage of LULC in all studied years is presented in Table 5. In general, LULC 
observation in Kuantan based on image classification from 1994 to 2022 was dominated 
by urbanisation and vegetation. There was a significant inverse relationship between the 
build-up and vegetation classes. Figure 5 shows a constant increase of build-up coverage 
by approximately 32% of the total coverage area changes found from 1994 to 2022. As for 
vegetation, the coverage dropped from 1440 ha of the total area to approximately 1171 ha 
before it bounced back with a slight increment of 30 ha in 2017. Meanwhile, 2022 recorded 

Figure 5. LULC changes using the ML classifier in Kuantan by area coverage from 1994 to 2022
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Figure 6. LULC coverage map for 1994 in Kuantan using ML classifier

Figure 7. LULC coverage map for 2001 in Kuantan using ML classifier
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Figure 8. LULC coverage map for 2013 in Kuantan using ML classifier

Figure 9. LULC coverage map for 2017 in Kuantan using ML classifier
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the lowest coverage with less than 1000 ha. Overall, the vegetation coverage depicted 32% 
of the total coverage in the study area. Bare land faced a slight fluctuation over the past 
28 years. There were also less significant changes in water outlet and storage in Kuantan. 
Furthermore, LULC in Kuantan has been experiencing major urban development due to 
the increasing demand for various needs. The increment of build-up coverage from 1994 
to 2022 has been affecting the vegetation distribution as well as the bare land. The increase 
in socioeconomic growth and development has also attracted more migration into the city. 
Therefore, the build-up coverage expanded at a higher rate starting from 2013 compared 
to the early mid-90s. 

According to the Kuantan Municipal Council, the city of Kuantan has been experiencing 
an annual population growth of 2.68%, causing changes in land use and extending the 
urban limit. Such a change has significantly increased the flooding frequency following 
the fluctuation of the runoff-discharge relationship. It is important to note that in 2013, 
the land area of Kuantan experienced the highest coverage during the past three decades 
when a massive flooding event occurred at the year’s end. Zaidi et al. (2014) propounded 
that prolonged rainfalls and land use changes in 2013 had exposed low-lying regions, 
including Kuantan, to the risk of massive flooding. A constant change in build-up coverage 
and slight increments of bare land may bring about significant effects on river capacity, 
especially in Kuantan, as both the area coverage of bare land and built-up increased from 
1995 to 2013. It has been supported by a study by Konrad (2014) that validated the effect of 

Figure 10. LULC coverage map for 2022 in Kuantan using ML classifier
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urbanisation and massive land openings for development activities in flood-prone regions, 
increasing the flooding risk. Besides, changes from dense vegetation cover to agricultural 
and residential areas affect the hydrological ecosystem, including soil degradation imbalance 
and streamflow (Tewabe & Fentahun, 2020). It has been proven that, in late 2013, massive 
flooding hit the city of Kuantan, affecting local communities and the environment. Besides 
that, this flooding event significantly deteriorated buildings, properties, utility structures, the 
transportation system, agricultural crops, and vegetation (Rahman, 2014; Romali et al., 2019).

Climate change and global warming also contribute significantly to the hydrological 
system of the watershed through extreme evapotranspiration and imbalanced water 
components, thus increasing the rate of overflow events (Neidhardt & Shao, 2023; Johnson 
et al., 2022). According to Amini et al. (2022), the fluctuation of vegetation in the past 
few decades was caused by extreme drought. However, a study by Husain et al. (2023) 
suggested that massive population per area and vegetation cover can influence the surface 
temperature, which can cause global warming and heat islands. Furthermore, there is a 
substantial correlation between water abundance obtained from the LULC map and surface 
temperature, which affects glacier reduction and sea level rise (Samra, 2021). This indicates 
that LULC changes play an enormous part in contributing to climate change. 

The special Economic Zone proposed by the Malaysian government in Kuantan City 
has a significant effect on the LULC, where high rates of anthropogenic activities contribute 
to the LULC changes. Extensive bare land exploration and reduction of forest cover for 
urbanisation and industrial expansion can modify the surface runoff and infiltration rates, 
percolation, and lateral flow, exposing the city to the threat of flash floods. As the data 
from 2022 indicates, the built-up area in Kuantan has seen substantial growth, expanding 
to three times its size compared to 1994. This considerable expansion underscores the 
rapid urbanisation and development this area has experienced over the span of nearly three 
decades. Extensive industrial and economic growth movement in the main city has highly 
contributed to the formation of LULC (Amini et al., 2022). A study by Saddique et al. (2020) 
suggested that LULC changes can massively influence the water balance components in 
a river basin, such as surface runoff, base flow, water yield, and evapotranspiration. The 
influence of agriculture and the main forest may also contribute to the increase in LULC 

Table 5
LULC changes for the years 1994, 2001, 2013, 2017, and 2022

LULC  
Classification

Yearly LULC Coverage (Ha)
1994 2001 2013 2017 2022

Bare Land 1267.0165 1715.6422 1815.7364 434.6605 1205.9481
Build-up 2098.2353 2859.1095 4071.0507 5193.9036 6546.9908
Vegetation 14409.1381 13044.0127 11719.9452 12088.9712 9779.5833
Water Body 2564.4092 2720.0977 2762.1378 2621.3023 2824.0054
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change rates. The phenomenon also happened in Tanzania, where agriculture is the main 
source of income for the communities living there (Ngondo et al., 2021). The coastal forest 
has indicated a significant decline as urbanisation rates increased (Maryantika & Lin, 
2017). These changes have a substantial effect on urban growth, especially in Kuantan.

LULC Accuracy Analysis

The Kappa coefficient and confusion matrix were generated based on the classification of 
LULC for the years 1994, 2002, 2013, 2017, and 2022 (Figure 11). The accuracy assessment 
seemed reliable and acceptable for all classifications across the years. Nevertheless, the 
image classification 1994 recorded a notably low accuracy, which may have resulted from 
the misclassification and high noise in the image satellite. The overall accuracy of image 
classification in 2013 and 2022 was slightly less significant compared to those in 2017 
due to the differences in spatial resolution and image quality. Despite the high resolution 
of Sentinel-2, the classification could not provide distinctive features for recognising real 
classes because of the insufficient training sample. Since all images used the same training 
dataset, the high-resolution imagery would be affected the most as the image size ratio did 
not influence the classification algorithm. It suggests that although Sentinel-2 data provides 
images with higher spatial resolution, the Landsat data may be a better source to investigate 
LULC changes following its capability to monitor Earth for more than five decades.

Based on the results, it is evident that image classification classifiers can distinguish 
more relevant features and provide an accurate prediction. Different spatial quality and 
quantity may cause poor overall accuracy. The image with a larger pixel size can serve 
a huge number of features due to the increased level of detail. It may lead to better 
discriminative power and improved accuracy of the classification. Fisher et al. (2017) 

Figure 11. Graph of accuracy analysis for LULC classification in 1994, 2002, 2013, 2017 and 2022 based 
on ML
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indicated that spatial resolution has a significant impact on the outcome of the classification, 
with higher resolution providing higher overall accuracy. However, this result has caused 
a significant increase in processing time and cost. Aja et al. (2022) highlighted that image 
classification using Sentinel satellite imagery produced less significant results compared 
to Landsat satellite imagery. It is consistent with the results of this study, where sentinel 
imagery, which provided higher spatial resolution imagery, required a detailed assessment 
compared to less spatial resolution. Moreover, handling a high-quality image requires 
significantly higher computational resources and processing time than a low-quality 
image. The amount of training data and inference speed of image classification also varied 
with the image pixel size. Therefore, it is recommended to consider the trade-off between 
computational complexity and accuracy, depending on the application requirement. 

LIMITATION AND IMPLICATION

Comprehensive and cost-effective monitoring technology for LULC studies associated 
with forest distribution holds imperative importance. Introducing remote sensing satellite 
technology and GIS offers significant advantages for a highly dense city such as Kuantan, 
which has high land use heterogeneity. The capability of the Sentinel-2 satellites to identify 
surface features and generate classifications based on different algorithmic approaches 
stands as an acceptable method for LULC studies. While machine learning techniques 
have shown promising results in identifying LULC changes, some limitations include 
insufficient training pixels. Obtaining the training datasets in highly concentrated areas, 
especially in residential areas, is relatively difficult as the course satellite image with a low 
level of detail covers a huge area of a single training dataset. Eventually, misclassification 
of certain pixels tends to occur, especially during the execution of RF algorithms that are 
highly sensitive to input data.

Integrating a diverse data source from different satellite imageries for LULC changes 
makes it possible for recent data with the new remote sensing technology but not for 
historical data, especially satellite images from the 1990s to 2000s in Kuantan. The 
outdated and incomplete LULC maps are constrained to the LULC analysis, especially 
for the image availability before the 2000s. Recent remote sensing and GIS technology to 
obtain LULC data has benefited the stakeholders in terms of time, cost, and effort to study 
the LULC changes. Complimentary field surveys, online database monitoring or real-time 
supporting data can increase the study’s reliability and accuracy. As the study progresses, 
LULC will be crucial in flood risk management as it helps identify susceptible flooding 
areas, especially in under-monitor regions like Kuantan. Furthermore, extensive changes in 
LULC coverage, especially in natural vegetation and wetlands, can alter the environmental 
ecosystem. Considering the LULC function, comprehensive green development practices 
can be implemented in developing policies and designing management strategies.
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CONCLUSION AND RECOMMENDATION

LULC maps have a wide application, including natural resource management, baseline 
mapping for GIS input, and legal boundaries for tax and property evaluation. Generating 
LULC maps is impossible without the help of other geospatial datasets. This study applied 
remote sensing and GIS technology to analyse the significant LULC changes underlined 
by the continuous development in Kuantan. RF and ML classifiers generated an acceptable 
LULC classification based on the satellite imagery. ML posed a higher overall accuracy of 
92% compared to RF, with 85% overall accuracy. RF tends to be overfitted and requires 
a huge training dataset to compute the image classification. However, it is most suitable 
for the high heterogeneity of LULC with detailed features compared to the ML classifier. 
It is recommended that both RF and ML classifiers be integrated with other classifiers to 
increase their validity and reliability. Given that both classifiers have significantly good 
results, an integrated, comprehensive classification scheme that compromises supervised 
classification and machine learning can be achieved in the near future.

As for LULC changes, high-intensity development in Kuantan affected the LULC 
pattern from 1994 to 2022. Primarily, build-up coverage significantly increased while 
vegetation coverage degraded. Sustainable landscape and town planning management is 
necessary because population growth and economic demand are the main factors influencing 
LULC changes. These elements are important for smart urban city planning and are aligned 
with the Sustainable Development Goal (SDG)-11. Therefore, LULC identification based on 
the surface spectrum of satellite images utilising remote sensing data is a proper technique 
to investigate land use status as part of the effort to provide ecosystem balance. Yet, there 
have been recommendations for LULC to use satellite imaging to improve coverage and 
spatial data observation by satellite imagery, particularly in Kuantan. It includes practising 
deep learning and artificial intelligence (AI) interfaces with advanced imputation for image 
analysis. In conclusion, accessible and transparent information on LULC changes can be 
introduced as a tool to support the establishment of an advanced technological revolution 
towards the construction of smart cities.
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