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ABSTRACT

Convolutional Neural Networks (CNN) are widely used for image analysis tasks, including 
object detection, segmentation, and recognition. Given the advanced capability, this study 
evaluates the effectiveness and performance of CNN architecture for analysing Historical 
Topographic Hardcopy Maps (HTHM) by assessing variations in training and validation 
accuracy. The lack of research specifically dedicated to CNN’s application in analysing 
topographic hardcopy maps presents an opportunity to explore and address the unique 
challenges associated with this domain. While existing studies have predominantly 
focused on satellite imagery, this study aims to uncover valuable insights, patterns, and 
characteristics inherent to HTHM through customised CNN approaches. This study 
utilises a standard CNN architecture and tests the model’s performance with different 
epoch settings (20, 40, and 60) using varying dataset sizes (288, 636, 1144, and 1716 
images). The results indicate that the optimal operation point for training and validation 
accuracy is achieved at epoch 40. Beyond epoch 40, the widening gap between training and 
validation accuracy suggests overfitting. Hence, adding more epochs does not significantly 

improve accuracy beyond the optimum 
phase. The experiment also shows that the 
CNN model obtains a training accuracy 
of 98%, validation accuracy of 67%, and 
F1-score overall performance of 77%. The 
analysis demonstrates that the CNN model 
performs reasonably well in classifying 
instances from the HTHM dataset. These 
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findings contribute to a better understanding of the strengths and limitations of the model, 
providing valuable insights for future research and refinement of classification approaches 
in the context of topographic hardcopy map analysis.

Keywords: Convolutional Neural Network (CNN), deep learning, feature map recognition, Historic Topographic 
Hardcopy Map (HTHM) 

INTRODUCTION

The digitisation of archive collections by heritage and library institutions has led to the 
accessibility of vast amounts of historical data, including the topographic hardcopy maps. 
Existing methodologies in historical map analysis have traditionally relied on manual and 
semi-automatic procedures of feature extraction techniques for vectorisation. This process 
is often labour-intensive, time-consuming, and prone to subjectivity (Anuar et al., 2021). 
In contrast, CNNs offer the potential to automate and streamline the analysis process, 
especially in object detection. According to research in the field of CNNs, increasing the 
epoch number and the training dataset size can potentially enhance the accuracy of both 
training and validation (Althnian et al., 2021; Barry-Straume et al., 2018). 

However, the influence of these factors on accuracy may be contingent upon various 
aspects, such as the specific dataset characteristics and the complexity of the problem at 
hand (Ali et al., 2021). The number of epochs plays a crucial role in the learning process 
of a CNN. By increasing the number of epochs, the model can iterate over the training 
dataset multiple times, enabling it to capture more intricate patterns and improve accuracy 
(Garbin et al., 2020; Kumar et al., 2024). Nonetheless, it is essential to strike a balance, as 
excessively high epoch numbers may lead to overfitting (Chauhan et al., 2018; Poojary et 
al., 2020). Overfitting occurs when the model becomes overly specialised in the training 
data and fails to generalise well to unseen data. Monitoring the validation accuracy during 
training is recommended to determine an optimal number of epochs. Once the validation 
accuracy plateaus or begins to decrease, further training may not yield substantial 
improvements (Dawson et al., 2023; Johny & Madhusoodanan,  2021).

The training dataset size also influences the CNN performance. Increasing the dataset 
size gives the model a more diverse set of examples, enhancing its ability to generalise and 
perform well on unseen data. However, ensuring that the dataset remains representative 
of the problem domain and encompasses an adequate range of variations and scenarios is 
essential. Acquiring or generating a more extensive dataset may entail additional costs and 
efforts, necessitating careful consideration of the available resources. Increasing the number 
of epochs and training dataset size generally positively impacts CNN accuracy (Kandel 
& Castelli, 2020). However, finding the optimal values requires empirical investigation 
and diligent monitoring of validation performance to prevent overfitting. Achieving the 
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best possible accuracy necessitates carefully balancing model complexity, computational 
resources, and data availability. 

Thus, the evaluation results were presented, highlighting the CNN architecture 
performance on the HTHM dataset. The relationship between epoch variation, dataset size, 
and training and validation accuracy was analysed and discussed. The findings provide 
insights into the effectiveness of the CNN architecture for analysing HTHM and offer 
guidance for determining the optimal epoch value and dataset size for achieving satisfactory 
performance. This study aims to test the CNN architecture on the Historical Topographic 
Hardcopy Map (HTHM) dataset; thus, the objectives of this study are:

1.	 To review the CNN model structure on trained Historical Topographic Hardcopy 
Map dataset.

2.	 To evaluate the training and validation accuracy by varying the epoch on different 
dataset amounts. 

By explicitly comparing the CNN approach to existing methodologies, the study 
contributes to the growing body of literature on computational methods for historical 
map analysis, offering insights into the strengths and limitations of CNNs and providing 
guidance for future research in this area.

BACKGROUND STUDY

While numerous studies have focused on using satellite imagery as the dataset for CNN-
based research, this study stands out by utilising topographic hardcopy maps as the dataset’s 
domain. This novel approach introduces a unique perspective in applying CNN, exploring 
the potential of extracting valuable information and insights from traditional cartographic 
representations. By shifting the focus from satellite imagery to topographic hardcopy maps, 
this research opens new avenues for leveraging CNN in geospatial analysis. It contributes to 
a broader understanding of the digital transformation in cartography and spatial data analysis.

Based on the available literature, a significant body of research has utilised CNN 
for analysing satellite imagery as their primary dataset in various domains, including 
remote sensing and geospatial analysis (Bhosle & Musande, 2022; Li et al., 2021). These 
studies have demonstrated the effectiveness of CNN in extracting meaningful information 
and patterns from satellite images, leading to advancements in fields such as land cover 
classification, object detection, and change detection. Audebert et al. (2019) introduced a 
deep-learning approach for hyperspectral data classification using CNNs. The proposed 
framework surpasses the limitations of traditional methods by leveraging the power of CNNs 
to capture both spatial and spectral information. The results highlight the effectiveness of 
CNNs in enhancing hyperspectral data analysis through improved classification accuracy 
and better utilisation of the rich information in hyperspectral images. Chen et al. (2016) 
and Sharifi et al. (2022) proposed a CNN-based method for accurate hyperspectral image 
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classification by leveraging its hierarchical representation learning capabilities. The study 
demonstrated the effectiveness of CNN in extracting discriminative features from complex 
hyperspectral data. This finding underscores the potential of CNN as a valuable tool for 
improving the analysis and classification of hyperspectral imagery. Ji et al. (2018) presented 
a 3D CNN-based method for deep feature extraction and classification of hyperspectral 
images. By harnessing CNN’s hierarchical representation learning capabilities, the aim 
is to enhance the accuracy of hyperspectral image classification. Hamouda et al. (2020) 
demonstrated that smart feature extraction and classification of hyperspectral images using 
CNN improves classification accuracy while reducing computing time. Findings from Liu 
et al. (2020) demonstrate the effectiveness of CNN in extracting discriminative features 
from complex and high-dimensional hyperspectral data and focus on multi-label land cover 
classification using CNN for remote sensing images. The aim is to tackle the challenge of 
simultaneous classification of multiple land cover types from satellite imagery. The study 
achieved promising results by employing CNN to identify various land cover categories 
accurately. These findings highlight the potential of CNN in facilitating comprehensive 
land cover analysis in remote sensing applications. 

For instance, Liu et al. (2020) and Dwivedi and Patil (2022) employed CNN for land 
cover classification using satellite imagery, achieving high accuracy in identifying different 
land cover classes. Guo et al. (2018) utilised CNN for object detection in satellite images, 
enabling the automated identification of specific objects, such as buildings, roads, and 
vegetation. Similarly, Li et al. (2020) employed CNN for change detection in satellite 
imagery, facilitating the identification of temporal changes in land cover over different 
periods. Based on this evidence, CNNs have gained popularity in Remote Sensing due to 
their effectiveness in handling various image analysis tasks. 

However, concerning Geospatial and Digital Cartography (Geospatial Cartography), 
CNNs are also utilised for performing vectorisation through hardcopy maps, object 
classification, and image analysis. It highlights the versatile capabilities of CNNs in 
both Remote Sensing and Geographic Information Systems (GIS) domains, enabling the 
extraction of valuable information from various types of data sources and facilitating 
comprehensive spatial analysis. It is important to note that there appears to be limited 
research explicitly focusing on applying CNN in analysing topographic hardcopy maps 
as the dataset domain. While topographic maps are crucial in various fields, such as urban 
planning, environmental assessment, and infrastructure development, most existing studies 
have primarily focused on satellite imagery. Therefore, the study on CNN using topographic 
hardcopy maps as the dataset introduces a novel perspective to the field. By exploring the 
application of CNN in analysing topographic maps, the study will have the opportunity to 
address unique challenges and extract valuable insights specific to this domain. It includes 
identifying features, patterns, and characteristics inherent to topographic maps, which may 
require customised approaches for effective analysis and interpretation.
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This study expands the scope of CNN applications in geospatial analysis and 
provides a valuable contribution to the field, focusing on topographic hardcopy maps. It 
fills a gap in the existing literature and opens avenues for further exploration, ultimately 
advancing the understanding and utilisation of topographic maps in various domains. The 
study also explores and identifies its limitations and areas for improvement. Analysing 
misclassifications reveals patterns or challenges the model struggles with, informing 
refinements in pre-processing, training data augmentation, and model architecture. 
Addressing these insights can enhance the model’s accuracy and reliability for HTHM 
analysis.

METHODOLOGY

The HTHM dataset was utilised to train the CNN architecture. The selected CNN 
model underwent rigorous evaluation and analysis on the HTHM dataset to determine 
its effectiveness in extracting meaningful information from the maps. Various metrics, 
including training and validation accuracy, were assessed to quantify the CNN architecture 
performance. The impact of varying the epoch during training and utilising different dataset 
sizes was investigated. This analysis involved training the CNN model with different epoch 
values on subsets of the HTHM dataset and observing the corresponding training and 
validation accuracy changes. Epochs in this study refer to the number of times the entire 
training dataset is presented to the model during training. Setting epochs at intervals of 
20 allowed the study to assess the model’s performance early in training (20 epochs), at a 
mid-point (40 epochs), and after further training (60 epochs). This approach enabled the 
study to analyse how accuracy varied as the model underwent different stages of learning 
and whether additional training beyond a certain point yielded significant improvements 
or led to overfitting. By exploring different epoch durations and dataset sizes, valuable 
insights regarding optimal training conditions can be obtained.

The study expected that training and validation accuracy would improve by increasing 
the number of epochs and datasets. Thus, the outcomes of this paper were used to further 
improve the selection of the best architecture for implementing automatic vectorisation for 
HTHM. The following are the detailed steps of this research methodology: Data Collection, 
Data Pre-processing, CNN Training Model, Evaluation of Performance, and lastly, Result 
and Conclusion.

Data Collection

The scanned HTHM were collected from Perpustakaan Tun Abdul Razak at UiTM Shah 
Alam, specifically in the Mapping section. The study classified four objects: buildings, water 
bodies, land use, and roads. All the images were cropped on ten hardcopy map samples, 
which moderated conditions. The map was scanned using an A0 flatbed scanner with 500 
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dpi. All the datasets were cropped in dimensions of 224 pixels by 224 pixels (Figure 1) 
to ensure the dataset is of standard size. Figure 1 shows a sample of each object class in 
HTHM. The examples of every dataset class are shown in Table 1.

Table 1 and Figure 1 outline the composition of the dataset. The dataset focuses on map 
features, including contour building, land use, road and water bodies. Each dataset presents 
unique challenges for model generalisation. Variations in map feature complexity and quality 
may introduce bias and affect the model’s ability to generalise across diverse conditions. The 
dataset may not fully represent the diversity of historical topographic hardcopy maps (HTHM) 
in terms of geographical regions, periods, or map styles. This limitation could result in the 
model being biased towards the characteristics of the included maps.

Table 1 
Object in historical topographic hardcopy map

Dataset Sample 1 Sample 2 Sample 3

Building

Building 1 Building 2 Building 3

Land Use

Rubber Tree Plantation Palm Oil Plantation Forest

Figure 1. Sample of historical topographic hardcopy map
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Data Pre-processing

Four datasets in this study represent objects on hardcopy maps. Dataset 1 represents 
buildings, Dataset 2 represents land use, Dataset 3 represents roads, and Dataset 4 represents 
water bodies. While preparing the datasets, each image was augmented with the following 
techniques: rotations of 90°, 180°, 270°, flip vertical, and flip horizontal. Data augmentation 
can assist in lessening overfitting, a significant issue in Deep Learning, and enhancing 
model performance (Khalifa et al., 2022). All classes of objects were subjected to image 
augmentation. The specifics of the augmentation are shown in Figure 2.

The dataset was divided into a 70:20:10 ratio, with 70% of samples for training, 20% 
for validation, and 10% for model testing. The study performed five training sets, each 
with several datasets and epochs. The distribution of training sets is shown in Table 2.

Based on Table 2, experiments 1 to 4 undergo training using the CNN model at epochs 
20, 40, and 60. Each training was tested for its capability of achieving training and validation 
accuracy. Experiment 1 used 288 images; experiment 2 used 636 images; experiment 3 
used 1144 images; and experiment 4 used 1716 images.

Dataset Sample 1 Sample 2 Sample 3

Road

Main Road Small Road Small Road 

Water Bodies

River 1 River 2 River 3

Table 1 (continue)

Original Rotate 90o Rotate 180o Rotate 270o Flip vertical

Figure 2. Example of augmentation image on building dataset
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The Proposed CNN Training Model

In this study, a CNN model was developed to detect the objects on HTTM that had already 
been scanned. Figure 3 shows the structure of the CNN model, and Table 3 displays the 
layers and details for each layer.

The model used an adopted technique from Roslan et al. (2023). The first layer in this 
model is a convolutional layer, calculating 16 features for each 3×3 kernel. The second 

Table 2
Training set details

No. experiment 1 2 3 4
Epochs 20/40/60 20/40/60 20/40/60 20/40/60
Training data 200 444 800 1200
Validate data 60 128 228 344
Testing data 28 64 116 172
Total data set 288 636 1144 1716

Figure 3. The proposed structure of the CNN model

each layer. 

 

 

 

 

 

 

 

 

Figure 3. The proposed structure of the CNN model 
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Table 3
CNN layers in the proposed model

No Layer (Type) Layer type and filter shape
1 Conv2D Convolution-ReLU, Kernel <16×3×3>
2 Pooling2D Max pooling, 2×2
3 Batch_normalization -
4 Conv2D_1 Convolution-ReLU, Kernel <32×3×3>
5 Pooling2D_1 Max pooling, 2×2
6 Batch_normalization_1 -
7 Flatten Flatten
8 Dense ReLU activation
9 Activation_5 (Softmax) Classifier
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layer is a max-pooling layer with a 2×2 kernel. In the next step, another convolutional 
layer calculates 32 features for each 3×3 kernel. It is followed by another max pooling with 
a 2×2 filter. Note that the batch normalisation was applied after each max-pooling layer, 
and the rectified linear unit (ReLU) served as an activation function. After four layers, a 
fully connected layer can be found. In the last phase, a SoftMax layer creates a vector with 
four entries from the proceeding layers’ results vector. These four entries indicate the four 
types of objects in HTHM.

In this study, dropout was applied to hidden layers of the CNN architecture with 
varying dropout rates. By randomly masking a fraction of neurons during each training 
iteration, dropout helped prevent overfitting by ensuring that no single neuron or feature 
became overly reliant on specific input patterns. The impact of dropout regularisation was 
observed through improvements in validation accuracy and reduced overfitting tendencies, 
particularly as the model underwent additional training epochs. In the study methodology, 
optimising hyperparameters such as learning rate and batch size was essential to ensure the 
CNN model’s optimal performance. The learning rate and batch sizes determine the step 
size taken during the optimisation process by analysing the learning curve on the graph to 
update the model’s weights.

Evaluation of Performance

Each of the training sets underwent an accuracy evaluation. The observation was based 
on four elements, which are the results of this study.

Training and Validation Accuracy of the Model’s Accuracy Graph Interpretation 
Analysis

Visualising the model’s accuracy over epochs is valuable for understanding its performance 
and learning progress during training. It provides insights into how well the model fits the 
training data and its ability to generalise to unseen data. The benefits of visualising accuracy 
over epochs are as follows: First, it allows monitoring of the training progress by observing 
the accuracy trends over time. Steady increases or high plateaus indicate effective learning. 
Second, comparing training and validation accuracy helps detect overfitting or underfitting. 
A large gap suggests overfitting, while low values for both indicate underfitting. Third, it 
aids in determining convergence by identifying stable performance, where training and 
validation accuracy reach a plateau or show diminishing improvements. Finally, it facilitates 
model comparison by visualising the accuracy trends of multiple models, enabling the 
selection of the best-performing one based on convergence, generalisation, and overall 
accuracy (Alzubaidi et al., 2021).
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Model Loss Graph Pattern

The loss function quantifies the disparity between the model’s predicted and expected output 
to minimise this difference during training. Plotting the loss over epochs provides valuable 
information about the model’s learning progress and convergence. The significance of the 
loss graph and its interpretation are as follows: First, it allows monitoring of the model’s 
learning progress, with decreasing or plateauing loss indicating effective learning. Second, 
overfitting or underfitting can be identified by comparing the training loss with the validation 
loss. A significant decrease in training loss with high validation loss suggests overfitting, 
while high values for both indicate underfitting. Third, the loss plot helps determine if 
the model has converted to stable performance, as evidenced by a plateau or diminishing 
improvements in training and validation losses. By analysing the loss over epochs, valuable 
insights can be gained regarding the model’s learning behaviour, issues like overfitting or 
underfitting, and an overall assessment of its convergence and performance.

Confusion Matrix

Confusion Matrix is an important measure to evaluate the accuracy of credit scoring models 
(Zeng, 2020). The confusion matrix is a comprehensive summary of a model’s predictions 
and the actual labels of the data points, particularly in classification problems (Tharwat, 
2020). It consists of a table where rows represent true labels and columns represent predicted 
labels. The matrix provides counts or proportions of true positives (correctly predicted 
positives), true negatives (correctly predicted negatives), false positives (incorrectly 
predicted positives), and false negatives (incorrectly predicted negatives). True positives 
and true negatives indicate correct predictions, while false positives and false negatives 
represent prediction errors. Analysing the confusion matrix helps identify the model’s 
accuracy and the specific types of errors it makes, enabling targeted improvements.

Classification Report

Evaluation metrics, such as accuracy, precision, recall, and F1-score, are commonly used 
to measure a model’s performance in predicting correct class labels. Accuracy represents 
the overall correctness of the predictions, precision measures the ability to identify positive 
instances correctly, recall measures the ability to identify positive instances out of all 
actual positives correctly, and the F1-score provides a balanced measure between precision 
and recall. Comparing predictions against a labelled dataset with known ground truth is 
crucial to assess model accuracy. These metrics help evaluate performance, identify areas 
for improvement, and inform decisions on model selection, hyperparameter tuning, and 
feature engineering. The accuracy, precision, recall, and F1 score will be calculated after 
implementing the model. It will use the confusion matrix, including true positive (TP), 
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true negative (TN), false positive (FP), and false negative (FN), to measure accuracy, 
precision, recall, and F1-score. The formulas for accuracy, precision, recall, and F1-score 
are represented in Equations 1 to 4.
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Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

        [2] 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                           [3] 

F1-score = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

       [4] 

EXPERIMENT RESULT AND ANALYSIS 

			   [4]

EXPERIMENT RESULTS AND ANALYSIS

The experiment was conducted by performing data training based on several train datasets. 
The datasets were based on four classes: buildings, roads, water bodies, and land use. The 
images from these four classes totalled 288, 636, 1144, and 1716. These were tested on 20, 
40, and 60 epoch variations to find the best training performance for the HTHM dataset. 
Each dataset was evaluated based on its model accuracy, model loss, confusion matrix, and 
classification report as the model’s performance indicator. The results are shown below:

Experiment 1: 288 Data Set 

In Table 4, the CNN model’s results show an improvement in accuracy as the number 
of epochs increases. At epoch 20, the model achieved a training accuracy of 69% and a 
validation accuracy of 45%. By epoch 40, the training accuracy had significantly improved 
to 97.5%, with a validation accuracy of 48.33%. Concerning epoch 60, the training accuracy 
drops to 87.5%, while the validation accuracy drops to 41.67%.

Table 5 shows the validation accuracy of the model’s accuracy graph for experiment 
1. The confusion matrix and Classification report for HTHM data are tabulated in Table 6. 
The total image of a confusion matrix for testing data is 28, 10% for data testing from 288 

Table 4
Result of performance loss, accuracy, validation loss, and validation accuracy achieved for Experiment 1

288 data set
Epoch Loss Accuracy Val_loss Val_accuracy

20 0.9605 0.6900 1.2575 0.4500
40 0.1490 0.9750 1.9651 0.4833
60 0.3450 0.8750 2.4341 0.4167
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images. Table 7 shows that epoch 40 achieved high accuracy by testing average precision, 
recall F1 score and accuracy.

Table 5
Validation accuracy of the model’s accuracy graph for Experiment 1
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Table 6
Result of the performance confusion matrix and classification report for the testing model Experiment 1
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Experiment 2: 636 Data Set

The trained datasets were set to 636 images, and the implemented CNN architecture results 
are shown in Table 8.

In Table 8, the results of the CNN model show an improvement in accuracy as the 
number of epochs increases. At epoch 20, the model achieved a training accuracy of 81% 
and a validation accuracy of 46%. By epoch 40, the training accuracy had significantly 
improved to 98%, with a validation accuracy of 51.56%. Concerning epoch 60, the 
training accuracy peaks at 100%, while the validation accuracy drops at 50.78%. The 
model accuracy graph was shown in Tables 9 and 10 for the confusion matrix with its 
classification report.

The confusion matrix and classification report for HTHM data are tabulated in Table 
11. The total image of a confusion matrix for testing data is 64, 10% for data testing from 
636 images. 

Table 7
Average precision, average recall, average F1-score, and accuracy for the testing model in Experiment 1

288 data set
Epoch average precision average recall average F1-score Accuracy

20 0.49 0.39 0.42 0.39
40 0.54 0.43 0.44 0.43
60 0.30 0.21 0.23 0.21

Table 8
Result of performance loss, accuracy, validation loss, and validation accuracy achieved for Experiment 2

636 data set
Epoch Loss Accuracy Val_loss Val_accuracy

20 0.4528 0.8176 1.7168 0.4609
40 0.1169 0.9797 3.5790 0.5156
60 0.0054 1.0000 3.4112 0.5078

Table 9
Validation accuracy of the model’s accuracy graph for Experiment 2
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Experiment 3: 1144 Data Set

The trained datasets were set to 1144 images, and the implemented CNN architecture 
results are shown in Table 12.

In Table 12, the results of the CNN model show an improvement in accuracy as the 
number of epochs increases. At epoch 20, the model achieved a training accuracy of 22.12% 
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Table 10
Result of the performance confusion matrix and classification report for the testing model Experiment 2
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Table 11
Average precision, average recall, average F1-score, and accuracy for the testing model in Experiment 2

636 data set
Epoch average precision average recall average F1-score Accuracy

20 0.54 0.53 0.52 0.53
40 0.70 0.59 0.60 0.59
60 0.53 0.42 0.43 0.42

Table 9 (continue)
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and a validation accuracy of 25%. By epoch 40, the training accuracy had significantly 
improved to 86.62%, with a validation accuracy of 57%. Concerning epoch 60, the 
training accuracy dropped to 76.62%, followed by its validation accuracy at 52.19%. The 
model accuracy graph was shown in Tables 13 and 14 for the confusion matrix with its 
classification report.

Based on the result in Table 15, epoch 40 achieved high accuracy by testing average 
precision, recall F1 score and accuracy compared to epochs 20 and 60. It shows that epoch 
40 was the optimum epoch for the dataset training.

Table 12
The results of performance loss, accuracy, validation loss, and validation accuracy were achieved for 
Experiment 3

1144 data set
Epoch Loss Accuracy Val_loss Val_accuracy

20 1.3872 0.2212 1.3863 0.2500
40 0.3649 0.8662 1.9437 0.5702
60 0.5658 0.7662 1.6103 0.5219

Table 13
Validation accuracy of the model’s accuracy graph for Experiment 3
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Experiment 4: 1716 Data Set

The trained datasets were set to 1716 images, and the implemented CNN architecture 
results are shown in Table 16.

In Table 16, the results of the CNN model show an improvement in accuracy as the 
number of epochs increases. At epoch 20, the model achieved a training accuracy of 79.50% 
and a validation accuracy of 57.27%. By epoch 40, the training accuracy significantly 
improved to 94.75%, with a validation accuracy of 67.44%. Concerning epoch 60, the 
training accuracy dropped to 89.17%, followed by its validation accuracy at 61.34%. The 
model accuracy graph was shown in Tables 17 and 18 for the confusion matrix with its 
classification report.

Based on the results in Table 19, epochs 40 and 60 achieve high accuracy by testing 
average precision, recall F1 score and accuracy compared to epoch 20. It shows that the 
optimum epoch for the dataset training was at epochs 40 and 60. Through experiments 1, 2, 3 
and 4, the variation in quality and diversity of topographic map datasets also pose significant 
challenges to CNN-based analysis. Variations in image quality and features also impact 

Table 14
Result of the performance confusion matrix and classification report for the testing model Experiment 3
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Table 15
Average precision, average recall, average F1-score, and accuracy for the testing model in Experiment 3

636 data set
Epoch average precision average recall average F1-score Accuracy

20 0.06 0.25 0.10 0.25
40 0.78 0.77 0.77 0.77
60 0.49 0.52 0.47 0.52
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Table 16
Result of performance loss, accuracy, validation loss, and validation accuracy achieved for Experiment 4

1716 data set
Epoch Loss Accuracy Val_loss Val_accuracy

20 0.4311 0.7950 1.2615 0.5727
40 0.1296 0.9475 5.3041 0.6744
60 0.2567 0.8917 2.1453 0.6134

Table 17
Validation accuracy of the model’s accuracy graph for Experiment 4
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Table 18
Result of the performance confusion matrix and classification report for the testing model Experiment 4
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the model’s accuracy and generalizability. Future research should address these challenges 
by evaluating computational efficiency and resource requirements and exploring methods 
to enhance the model’s adaptability to diverse map characteristics. Integrating CNN 
models with GIS enhances the usability of topographic map data, supporting automated 
feature extraction and spatial analysis for informed decision-making in various domains. 
Additionally, visualisation tools are crucial for ensuring user understanding, with detection 
boxes overlaid on maps facilitating the interpretation of model outputs. Developing 
system tools for object detection can further streamline the application of CNN models to 
topographic map analysis. Throughout the experiment, findings also reveal that all testing 
achieved their optimum accuracy at epoch 40. It indicates that the greater number of epochs 
does not affect the higher accuracy achieved for this dataset. Thus, the epoch number needs 
to be compatible with the dataset types to achieve an optimal detection model.

Examples of practical challenges encountered during map analysis include complex 
cartographic details and variability in map quality. The complex detail varies in size, 
shape, and clarity, posing challenges for accurate feature extraction and classification. The 
challenges introduce the capability of the CNN model, which is able to handle diverse 
datasets of HTHMs. The model is designed to learn hierarchical representations of these 
complex cartographic features. The model can capture local spatial patterns and semantic 
information by leveraging convolutional layers, accurately classifying and interpreting 
various map elements and quality.

CONCLUSION

In summary, the classification report analysis demonstrates that the model performs 
reasonably well classifying instances from the dataset. However, further improvements 
can be made to enhance the model to achieve a more balanced performance for each 
class. Findings from this study also contribute to understanding the model’s strengths 
and limitations, providing valuable insights for future research and refinement of the 
classification approach. Overall, evaluating CNN architecture for analysing HTHM has 
provided valuable insights into its effectiveness and potential applications. The study 
demonstrated that CNNs can accurately classify instances from the HTHM dataset, 
showcasing their suitability for analysing complex cartographic details, such as contour 

Table 19
Average precision, average recall, average F1-score, and accuracy for the testing model in Experiment 4

1716 data set
Epoch average precision average recall average F1-score Accuracy

20 0.75 0.70 0.70 0.70
40 0.79 0.77 0.77 0.77
60 0.79 0.77 0.77 0.77



2627Pertanika J. Sci. & Technol. 32 (6): 2609 - 2629 (2024)

CNN Architecture for Analysing Historical Topographic Hardcopy

lines, symbols, and textual annotations. The model exhibited satisfactory performance in 
most classes, with room for improvement in specific categories. This study also provides 
a foundation for advancing map analysis and interpretation within GIS. It underscores 
the potential of CNNs in automating the vectorisation process and facilitating the broader 
access and preservation of valuable historical records embedded in topographic maps. 
For potential future research directions, a hybrid CNN model with other machine learning 
algorithms for its higher accuracy in classification tasks could enhance the study’s accuracy, 
and additional datasets covering maps from various years would provide a broader range 
of topographical map data for analysis.
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