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ABSTRACT

In 2007, the European Union (EU) intended to become a water-efficient community. Yet, 
despite the EU’s commitment to the United Nations (UN) sustainable development goals 
(SDGs), relevant insights based on scientific research are still sparse. This study presents 
a pan-European water use performance evaluation, considering differences in production 
technologies and potential efficiency determinants. The empirical results are obtained by 
analysing country-level panel data from 2011 to 2020. Our paper provides more instructive 
and encompassing findings to inform holistic policy formulation and management practices 
than prior studies that have typically relied on partial-factor indicators with limited 
explanatory power. We find that European countries are subject to technological and 
efficiency heterogeneity, and our production function and inefficiency equation estimations 
attest to the existence of divergent cause-effect relationships, calling for decentralised, 
customised solutions. Arguably, our comparative benchmarking analysis constitutes the 
first comprehensive cross-country investigation for Europe of its kind, underscoring the 
importance of impactful science in fostering the preservation of high civilisation in line 
with the theme of this special issue.

Keywords: Europe, performance determinants, stochastic meta-frontier analysis, sustainability, water use 

efficiency

INTRODUCTION

Water is both an irreplaceable natural and 
strategic economic resource (Zheng et al., 
2018), indispensable for life on Earth and 
crucial to socio-economic progress (Luo 
et al., 2018; Yang et al., 2021). Moreover, 
by ensuring that this vital resource remains 
available for current and future generations, 
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efficient water utilisation is of fundamental 
importance for the stability and growth 
of societies. Notably, efficient water use 
coincides with the overall pursuit of resource 
sustainability and sustainable development 
(Bronner et al., 2022; Lombardi et al., 2019; 
Walker et al., 2019). Thus, we advocate 
that a thorough understanding of water 
use efficiency is integral to preserving and 
advancing human civilisation. 

As water quality and availability are 
considered major concerns in the European 
Union (EU), the community proposed a 
set of measures in 2007 to move towards a 
water-efficient and water-saving economy 
(European Commission, 2020, 2021). 
Furthermore, the European Innovation 
Partnership (EIP) on water was launched in 
2012 to “build an economy that is cleaner, 
greener, and more efficient” (European 
Commission, 2015). In addition, the EU 
has embraced the United Nations (UN) 
sustainable development goals (SDGs) to 
synchronise corresponding efforts across its 
member states (Adler, 2011).

In light of the above, we aim to evaluate 
water use efficiency in a pan-European 
context to gain insights for corresponding 
policy formulation and management 
practices. Our research is motivated 
by several critical gaps in the relevant 
literature. Existing research has overlooked 
regional heterogeneity due to technological 
differences across Europe. Hence, we apply 
a meta-frontier framework to account for 
variations in production technologies. 
Furthermore, we extend beyond traditional 
indicators to assess total-factor efficiency, 

allowing for more encompassing and 
instructive findings than prior studies 
that have typically relied on partial-factor 
measures with limited explanatory power. 
Additionally, we incorporate neglected 
aspects such as water quality and the type 
of resource usage in our analysis.

For our investigation, we employ 
stochastic frontier analysis (SFA). Originally 
developed by Aigner et al. (1977), SFA 
reflects the actual production technology, 
providing a more accurate depiction of 
the relevant underlying economic process 
(Bogetoft & Otto, 2011; Madaleno & 
Moutinho, 2023) than non-parametric 
benchmarking methods, particularly data 
envelopment analysis (DEA). Moreover, 
whereas DEA is not entirely compatible 
with statistical analysis because of its 
deterministic nature, SFA separates 
inefficiencies from random errors and 
supports the simultaneous assessment of 
contextual factors, enabling a more nuanced 
performance evaluation (Kumbhakar et al., 
2021; Madaleno & Moutinho, 2023). 

The key significance of our study 
in this special issue is rooted in the role 
water plays as a foundational element of 
humanity. Efficient water utilisation is 
deeply intertwined with the continuity of 
advanced civilisation by bolstering natural 
habitat preservation and human population 
well-being (Hatfield & Dold, 2019; United 
Nations, 2021b). In this sense, we seek to 
make an impactful scientific contribution 
to help pave the way for a prosperous 
future. Our paper offers a fresh perspective 
by focusing on Europe, as opposed to the 
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commonly studied case of China. To our 
knowledge, the present work is the first 
comprehensive transnational study on 
Europe in this field. The units of analysis 
are countries and regions based on country 
clusters.

LITERATURE REVIEW

Although cross-national comparisons play a 
crucial role in understanding sustainability 
comprehensively, allowing countries to learn 
from one another, previous research has 
paid little attention to the issue of regional 
heterogeneity (Zheng et al., 2018). In 
particular, the misconception that different 
production systems use the same underlying 
technology has been a common feature in 
previous SFA applications (Alem, 2021). 
Countries should be classified according to 
different production frontiers to facilitate 
policymaking that caters to their respective 
circumstances (Ganhadeiro et al., 2018; 
Sarkhosh-Sara et al., 2020; Yu et al., 2018). 
To this effect, a meta-frontier approach 
(Battese et al., 2004; Battese & Rao, 
2002; O’Donnell et al., 2008) enables the 
computation of comparable efficiencies for 
production subject to distinct technologies 
(Alem, 2021).

Meanwhile, water efficiency can be 
defined as the economic value of production 
per unit of water usage (Wudil et al., 
2023), and it is often assessed as such, 
notwithstanding that corresponding partial-
factor metrics consider water as a single 
input, neglecting other inputs (Zheng et al., 
2018). In practice, water is one of several 
key inputs in the production process (Yang 

et al., 2021). Hu et al. (2006) constructed 
an index of total-factor water efficiency, 
and in the ensuing literature, which mostly 
concerns China, water utilisation efficiency 
has typically been measured based on a 
classical production function approach 
(Ding et al., 2019; Luo et al., 2018; Wang 
et al., 2018; Zheng et al., 2018).

According to the European Commission 
(2020), freshwater abstraction varies among 
EU member states due to country size, 
available resources, abstraction practices, 
climate, and economic structure. Indeed, 
various exogenous factors can affect water 
use efficiency (Deng et al., 2016; Luo et 
al., 2018), including socio-economic ones 
(Ma et al., 2017). Scholars have considered 
a range of potential determinants, such as 
living standards, urbanisation, industrial 
agglomeration, resource endowment, or 
environmental regulation. 

In particular, water resource efficiency 
can be influenced by differences in living 
standards between countries that arise from 
varying levels of economic development 
(Yu et al., 2018; Zheng et al., 2018). 
Previous work showed a positive effect of 
per capita gross domestic product (GDP) 
on water utilisation efficiency in Chinese 
provinces (Bao & Chen, 2017), but other 
researchers discerned no clear link (Ding 
et al., 2019). 

As symbols of modern civilisation, 
cities often have advanced water supply and 
sewage treatment facilities, contributing to 
improved water use efficiency (Bao & Fang, 
2010; Ma et al., 2016). While urbanisation 
can have a positive impact (Bao & Chen, 
2017; Zheng et al., 2018), it may also disturb 
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the hydrologic balance (Mays, 2013), 
with population growth and concentration 
posing concerns about the sustainable 
use of natural resources (Sarkhosh-Sara 
et al., 2020). In addition, inappropriate 
scaling in management and production 
during urbanisation can impede efficiency 
enhancements (Ding et al., 2019). 

Furthermore, the volume of water 
abstraction per inhabitant is affected by the 
prevalence of water-intensive economic 
activities such as farming and electricity 
generation (European Commission, 2020). 
Given that the agricultural and industrial 
sectors are major water consumers, 
efficiency improvements could be achieved 
by refining crop irrigation methods and 
optimising industrial water usage (Bai et al., 
2017). More generally, water use efficiency 
can be linked to economic structure (Li & 
Ma, 2015; Su et al., 2012), where it has been 
shown that industrialisation exerts both a 
positive (Zheng et al., 2018) and a negative 
(Wang et al., 2018) effect. 

Resource endowment potentially 
constitutes another influential factor 
(O’Donnell et al., 2008), with per capita 
freshwater resources as a sustainability 
indicator (European Commission, 2020). 
On the one hand, when water resources are 
plentiful, outdated production technology 
and inadequate water resource management 
may be more prevalent, evidencing the 
existence of a ‘resource curse’ (Ding et al., 
2018; Zheng et al., 2018). However, other 
findings suggest no such relationship (Ding 
et al., 2019). 

Moreover, governmental intervention 
can affect resource usage, for example, 

by imposing environmental regulations 
to steer consumption behaviour, stimulate 
technological innovations targeting 
recycling and reuse practices, or promote 
investment in infrastructure upgrades 
(Ganhadeiro et al., 2018; Zhang et al., 
2017). While some research indicates that 
corresponding policies influence water use 
efficiency positively (Ding et al., 2019; 
Zheng et al., 2018), other results suggest 
little impact (Wang et al., 2018). 

Prior results are inconclusive, and in 
shedding additional light on these issues, 
we focus on Europe rather than the usual 
case of China to bring a new perspective to 
the literature.

METHODS

General Setup

To reflect varying production technologies, 
we use cluster analysis to create three groups 
of European countries. Our technology-
related segmentation criteria comprise 
the Competitive Industrial Performance 
(CIP) index, resource productivity, energy 
productivity, and the share of renewable 
energy in total energy. 

Constructing separate production 
frontiers allows us to assess countries 
against the best practices in a particular 
cluster (Jiang et al., 2020). Furthermore, 
the meta-frontier can be seen as an umbrella 
encompassing all possible frontiers that may 
emerge due to differences between countries 
(Molinos-Senante & Sala-Garrido, 2016). 
The meta-frontier curve envelopes the 
cluster frontiers in a basic output-oriented 
framework, as illustrated in Figure 1.
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The discrepancy between each cluster 
frontier and the meta-frontier can be 
quantified by employing technology gap 
ratios (TGRs) that span from 0 to 1 (Jiang 
et al., 2020). The TGRs provide a measure 
for the proximity of each cluster frontier, 
and thus each country, to the meta-frontier 
(Molinos-Senante & Sala-Garrido, 2016).

Meta-frontier Model

Consider a production process in which each 
country employs capital stock K, labour 
force L and water resource W as inputs 
to produce output Y, which also affects 
water quality Q as an additional production 
outcome. Conceptually, the production 
technology can be defined as:

P = {(K, L, W, Y, Q): (K, L, W) can produce (Y, Q)}	
			                              [1]

Suppose there are G different groups 
of countries in each region and classified 
according to their technology level. The 
group-specific production technologies can 
be described as:

clusters

metafrontier

ou
tp

ut

Figure 1. Meta-frontier and cluster frontiers

Source: Authors᾽ work

Pɡ = {(K, L, W, Y, Q): (L, K, W) can 
produce (Y, Q)},

ɡ = 1, ..., G.

[2]

Similar to the definitions suggested by 
Zhou et al. (2012) and Wu et al. (2012) in 
their energy-related studies, we stipulate 
the following Shephard sub-vector input 
distance function for water use (hereafter 
named Shephard water distance function):

Dw(K, L, W, Y, Q) = sup{θ: (K, L, 
W/θ. Y, Q) ϵ P}

[3]

Equation [3] quantifies the maximum 
potential reduction in W. Consequently, W/
Dw(K, L, W, Y, Q) represents the hypothetical 
water usage. 

With respect to group technologies, 
given capital K, labour L, and outcomes Y 
and Q, the water input requirement set for 
group ɡ is defined as: 

.

Referring to Lin and Du (2013) and 
Zhou et al. (2012), we define the Shephard 
water distance function for the group 
technologies as:

ɡ = 1, ..., G.

[4]

This way, countries adjust their water 
input to move towards the frontier (Lin & 
Du, 2013). 

T h e  t e r m  i s  a 
theoretical measure of water use based 
on best practices within a particular 
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group. It represents a country's potential 
water usage, assuming it utilises the best 
technology available within its group. The 
set represents the lower 
boundary of the water input set WIɡ and is 
referred to as group ɡ′s water input frontier. 

Total-factor water efficiency WE, which 
is the ratio of optimal-to-actual water use 
(Hu et al., 2006), can be computed as 
follows:

[5]

WE is the reciprocal of the Shephard 
water distance function. It ranges from 0 to 
1, where a score of 1 indicates full efficiency. 

Accordingly, concerning the group-
specific frontiers, WE is defined as:

[6]

Further, we assume that the group-
specific production technologies belong 
to a wider technology set P*. Hence, the 
production technology of Europe can be 
defined as follows:

 [7]

P* = {(K, L, W, Y, Q):(K, L, W) can 
produce (Y, Q)}

[8]

In this context, the water input requirement 
set for the common technology can be 
expressed as . 
The lower boundary of this set relates to the 
meta-frontier.

With respect to the wider technology, 
the Shephard water distance function is 
stated as follows:

  [9]

And, regarding the meta-frontier, total-
factor water efficiency is:

      [10]

Meanwhile, Equation (7) implies that 
the meta-frontier envelopes the group 
frontiers. It can be expressed as follows:

[11]

Moreover, the technology gap ratio 
TGR, which measures how close group 
ɡ′s frontier is to the meta-frontier, can be 
defined as:

𝑇𝐺𝑅𝑔 𝐾 𝐿 𝑊 𝑌 𝑄

[12]

Based on Equation (12), the following 
relationship can be established (also see 
Figure 2):

WE* = WEɡ × TGRɡ [13]

Next, in accordance with existing 
literature (Du & Lin, 2017; Zheng et 
al., 2018), we adopt a translog function 
to specify the Shephard water distance 
function for country i and period t, as 
follows (Equation 14):

where the random variable (which 
accounts for statistical noise) follows the 
standard normal distribution, and each β is 
a parameter to be estimated. 

Observing that the Shephard water 
distance function is linearly homogenous in 
water input (Färe & Primont, 1995), we can 
write (Equation 15):



Pan-European Water Use Efficiency and Sustainability Evaluation Based on Stochastic Meta-frontier Analysis

7Pertanika J. Soc. Sci. & Hum. 32 (S4): 1 - 27 (2024)

[14]

   [15]

Then, Equation (14) can be transformed 
to read:

where is 
a non-negative variable representing water 
inefficiency. Following the estimation of 
the parameters in Equation [16], water 
efficiency can be computed in the following 
way: . 

Moreover,  in l ine with a model 
specification proposed by Battese and 
Coelli (1995) that allows for the estimation 
of a stochastic frontier with an error term 
that is associated with external variables, 
assuming , the water efficiency 
determinants are incorporated in the 
following inefficiency equation: 

[17]

where refers to the determinants, 
and each δ is a parameter to be estimated. 
It should be noted that all parameters in 
Equations (16) and (17) are computed 
simultaneously. 

The corresponding group-specific and 
meta-frontier formulations can be derived 
analogously (Lin & Du, 2013; Zhou et 
al., 2012). Based on Battese et al. (2004) 

metafron�er

group 
fron�er

group 
fron�er

group 
fron�er

Figure 2. Total-factor water efficiency and technology 
gap ratio

Note: The curve represents the production isoquant for 
variables W and Y when L and K are fixed. In relation 
to its group’s frontier, country A’s water efficiency 
equals the ratio BD/AD. With respect to the meta-
frontier, it is equal to the ratio CD/AD. Country A’s 
TGR is, therefore, the ratio CD/BD.

Source: Authors᾽ work

[16]
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and O’Donnell et al. (2008), the following 
condition (broadly stated in line with the 
above notation) must be met to ensure 
that the meta-frontier indeed envelopes 
the group frontiers: 
. The parameters of the meta-frontier 
can be calculated through optimisation 
(Battese et al., 2004; O’Donnell et al., 
2008), as follows: 
s.t . .  Subsequently, 
the TGRs can be obtained through 

. In the final step, the 
total-factor water efficiency scores related to 
the meta-frontier can be computed using the 
following formula: .

Sample and Data

Our sample consists of 29 European 
countries, comprising the 27 EU members: 
Austria (AUT), Belgium (BEL), Bulgaria 
(BGR), Croatia (HRV), Cyprus (CYP), 
Czechia (CZE), Denmark (DNK), Estonia 
(EST), Finland (FIN), France (FRA), 
Germany (DEU), Greece (GRC), Hungary 
(HUN), Ireland (IRL), Italy (ITA), Latvia 

(LVA), Lithuania (LTU), Luxembourg 
(LUX), Malta (MLT), the Netherlands 
(NLD), Poland (POL), Portugal (PRT), 
Romania (ROU), Slovakia (SVK), Slovenia 
(SVN), Spain (ESP), and Sweden (SWE), 
as well as the two non-EU members 
Switzerland (CHE) and the United Kingdom 
(GBR). The study timeframe covers ten 
years, from 2011 to 2020. The dataset is 
based on publicly available data collected 
and retrieved through database extraction 
from various sources (see Table 1). 

The factors of production considered 
are labour, capital, and water, while the 
economic output and environmental 
outcome variables are total production and 
water quality, respectively. In addition, 
the potential determinants of water use 
efficiency investigated include living 
standards, urbanisation, economic structure, 
resource endowment, resource use, and 
environmental conservation regulation.

A summary of our complete panel 
dataset is presented in Table 1.

Table 1 
Dataset

Categories Items 
(description)

Notation Units Mean Max. Min. Std. dev.

Clustering (segmentation) criteria 
#1 Competitive 

Industrial 
Performance 
(CIP) index

CIP Index 16,4 55,0 1,0 10,9

#2 Resource 
productivity

RP Purchasing 
power 

standards 
(PPS) per 
kilogram 

(kg)

1,97 4,55 0,62 0,92
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Table 1 (Continue)
Categories Items 

(description)
Notation Units Mean Max. Min. Std. dev.

#3 Energy 
productivity

EP PPS per 
kg of oil 

equivalent 
(KGOE)

8,37 22,22 3,95 2,71

#4 Renewable 
energy sources

REN Share of 
energy from 
renewable 
sources, %

20,1 60,0 2,0 11,6

Inputs
Labour Total 

employment
L Persons 

employed 
(thousand)

8.163 45.133 169 10.701

Capital Total fixed 
assets

K Million PPS 1.579.710 10.557.443 27.235 2.237.115

Water Total 
freshwater 
abstraction

W Cubic metres 
(million 

cbm)

7.026 35.069 41 9.613

Outcomes
Output Gross 

domestic 
product (GDP)

Y Million PPS 512.716 3.147.495 8.986 712.924

Water quality Water quality 
standard of 

natural bathing 
sites

Q Index 76,9 100,0 8,0 16,6

Total-factor water efficiency determinants
Living standard Population 

without 
sanitation 
facilities

LST % 2,8 36,7 0,0 6,2

Urbanisation Urban 
population

URB % 73,3 98,0 53,0 12,6

Economic 
structure

Gross value 
added (GVA), 

agriculture

STR Share of 
GDP, %

2,1 6.3 0,2 1,2

Resource 
endowment

Renewable 
freshwater 
resources

END Thousand 
cbm per 

inhabitant

8,3 32,3 0,1 7,7

Resource usage Freshwater 
abstraction for 
public water 

supply

USE Share 
of total 

freshwater 
abstraction, 

%

31,5 96,0 3,0 21,5

Environmental 
protection

Terrestrial 
protected area

EPR % 19,1 37,9 8,3 8,3

Data sources: AQUASTAT, Eurostat, Statistical Review of World Energy of the Energy Institute (EI), Swiss 
Federal Statistical Office (SFSO), UN Industrial Development Organization (UNIDO), UN Population 
Division, US Energy Information Administration (EIA), World Database on Protected Areas (WDPA).
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Our analysis was conducted using 
software R.

RESULTS AND ANALYSIS 

Factor Analysis

As advocated in the literature (Deng et 
al., 2016; Ganhadeiro et al., 2018), we 

perform a factor analysis to avoid potential 
multicollinearity among certain cluster 
criteria (Table 2), namely, the Competitive 
Industrial Performance (CIP) index, resource 
productivity (RP), and energy productivity 
(EP), while also reducing dimensionality 
(Figure 3).

Table 2 
Correlation matrix for segmentation criteria

  CIP RP EP REN
CIP 1
RP 0.49508101 1
EP 0.37666359 0.4736538 1

REN -0.06863821 -0.33122077 0.05008609 1
Source: Authors᾽ work

Figure 3. Factor extraction

Note: The factor loadings for CIP, RP, and EP are 0.627, 0.789, and 0.600, respectively.

Source: Authors᾽ work
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Cluster Analysis

We apply k-means clustering based on the 
latent factor (LF) derived from the preceding 

factor analysis and the REN values (see 
Table 3). 
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As shown in Figure 4, the countries 
are divided into three groups according to 
technological characteristics. Groups 1 and 

3 have nine constituent countries, while 
Group 2 contains eleven.

Table 3
The final set of segmentation criteria after data reduction

Items (description) Notation Units Mean Max. Min. Std. dev.
Latent factor 

(based on original 
variables CIP, RP, EP)

LF Index 35,7 100,0 0,0 21,7

Renewable energy 
sources REN

% energy from 
renewable 

sources
20,1 60,0 2,0 11,6

Source: Authors᾽ work

Figure 4. Segmentation (classification of countries)

Note: The impact or weight of each variable on the clustering outcome can be assessed by examining their 
within-cluster sum of squares. In particular, the standardised within-cluster sum of squares for the factor scores 
is 0.380 (Cluster 1), 0.176 (Cluster 2), and 0.444 (Cluster 3). For the REN values, the corresponding numbers 
are 0.715 (Cluster 1), 0.221 (Cluster 2), and 0.064 (Cluster 3).

Source: Authors᾽ work
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Figure 5 and the numbers reported in 
Table 4 reveal that the countries in Cluster 
1 are predominantly located in Northern and 
Eastern Europe. These countries tend to be 
smaller, less urbanised, less industrialised, 
and in the process of modernising. Cluster 
2 mainly contains medium-sized economies 

in Central and Southern Europe. Their living 
standards and extent of urbanisation and 
industrialisation are generally in the middle 
range. The countries included in Cluster 3 
are primarily situated in Western Europe. 
On average, they are larger, more advanced, 
urbanised, and industrialised.

Figure 5. Map

Source: Authors᾽ work



Pan-European Water Use Efficiency and Sustainability Evaluation Based on Stochastic Meta-frontier Analysis

13Pertanika J. Soc. Sci. & Hum. 32 (S4): 1 - 27 (2024)

A summary of our panel dataset by 
cluster is presented in Table 4.

At this stage, it should be noted that 
we have checked that the relevant data 

for the production function variables and 
the performance determinants do not pose 
concerns regarding multicollinearity.

Table 4
Summary of panel dataset by cluster

Cluster Mean Max. Min. Std. dev.
Cluster 1 (90 obs.)

Q 73,4 98 8 17,4
Y 153.878 422.627 24.288 119.920
L 3.204 8.829 606 2.466
K 528.872 1.419.057 74.630 389.048
W 3.144 8.880 169 2.730

LST 7,8 36,6 0 9,2
URB 69,3 88 54 10,7
STR 3 6,3 1,4 1
END 15,2 32,3 1,2 8,7
USE 28 78 3 21,3
EPR 20,1 36,7 11,5 9,1

Cluster 2 (110 obs.)
Q 79,4 100 22 17,2
Y 228.418 876.761 8.986 203.119
L 4.177 16.484 169 4.155
K 664.064 1.476.990 27.235 424.049
W 3.438 11.911 41 3.680

LST 0,8 4,2 0 1,1
URB 72,3 98 53 15,1
STR 2 4,2 0,4 1
END 5,7 22,5 0,1 5,5
USE 26,3 52 11 12
EPR 20,6 37,9 8,3 8,7

Cluster 3 (90 obs.)
Q 77,2 100 10 14,6
Y 1.219.030 3.147.495 36.487 922.452
L 17.994 45.133 224 14.227
K 3.749.673 10.557.443 76.506 2.994.167
W 15.294 35.069 43 13.257

LST 0,1 2,6 0 0,3
URB 78,5 92 62 8,6
STR 1,3 3,1 0,2 0,7
END 4,4 15,3 1,2 3,2
USE 41,3 96 11 27,1
EPR 16,2 27,3 8,5 6,1

Source: Authors᾽ work
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Stochastic Meta-frontier Analysis

Table 5a reports the computed coefficients 
for each group, while Table 5b shows the 

coefficients for the pooled data and the linear 
optimisation results for the meta-frontier.

Table 5a 
Parameter results for group frontiers

Group 1 Group 2 Group 3
Estimates 

(MLE)
Std. 

error
Estimates 

(MLE)
Std. 

error
Estimates 

(MLE)
Std. 

error
(Intercept) -158.8796 1.0587 *** -89.4806 14.5490 *** -10.1228 70.7619
log(K) 24.7208 0.7629 *** 13.5038 3.3105 *** 50.3681 14.3098 ***
log(L) 5.3601 1.3519 *** -38.3953 4.4095 *** -20.9193 17.8607
log(Y) -16.5016 0.8874 *** 27.7238 4.7521 *** -37.4762 20.6337 .  
log(Q) 34.9694 1.0119 *** -3.5260 3.5275 -7.1407 5.8311
I(0.5 * log(K)^2) 21.9658 1.1256 *** -2.9469 0.5417 *** 3.7362 1.6993 *  
I(0.5 * log(L)^2) -1.8491 1.0091 .  -7.2496 1.1918 *** -4.6047 2.3899 .  
I(0.5 * log(Y)^2) 14.9808 0.8552 *** -5.7873 1.8688 ** 18.0053 4.2013 ***
I(0.5 * log(Q)^2) 0.2382 0.3477 0.1396 0.4951 -0.0267 0.1066
I(log(K) * log(L)) -7.8560 0.8245 *** 2.4347 0.7067 *** 7.1164 1.9125 ***
I(log(K) * log(Y)) -18.7613 0.9880 *** 0.2015 1.0688 -12.5825 2.2594 ***
I(log(K) * log(Q)) -7.3808 0.7654 *** 0.4950 0.3749 -0.3739 0.3960
I(log(L) * log(Y)) 8.8358 1.1408 *** 5.1815 1.2054 *** -2.8627 2.4100
I(log(L) * log(Q)) 2.1663 0.6124 *** 0.5520 0.5096 -0.9322 0.7533
I(log(Y) * log(Q)) 3.7224 0.8322 *** -0.6817 0.6068 1.5774 0.8535 .  
t -0.2506 0.2905 -0.7417 0.0961 *** 0.3983 0.4752
I(t^2) 0.0021 0.0033 -0.0002 0.0011 0.0002 0.0012
I(t * log(K)) 0.1258 0.0739 .  0.0365 0.0199 .  0.1275 0.0365 ***
I(t * log(L)) -0.2872 0.0537 *** -0.1450 0.0281 *** 0.0143 0.0608
I(t * log(Y)) 0.1216 0.0714 .  0.1191 0.0343 *** -0.1801 0.0664 ** 
I(t * log(Q)) -0.1183 0.0558 *  0.0093 0.0218 0.0108 0.0215
Z_(Intercept) -0.0755 0.4443 -7.7907 0.7935 *** 2.0583 0.7174 ** 
Z_LST 0.4341 0.6076 11.6312 4.0518 ** -6.7640 4.9136
Z_URB 1.0659 0.6085 .  6.5442 0.6333 *** -2.0626 0.6242 ***
Z_STR 0.1531 0.9986 24.1149 4.2502 *** 49.1883 6.2924 ***
Z_END -0.0112 0.0077 -0.0012 0.0060 0.0121 0.0144
Z_USE -1.0995 0.2507 *** -2.5542 0.3507 *** -1.4466 0.4467 ** 
Z_EPR 1.9777 0.6403 ** 16.5403 1.2769 *** -1.3808 0.7861 .  
sigmaSq 0.0295 0.0081 *** 0.0120 0.0023 *** 0.0078 0.0015 ***
gamma 1.0000 0.1828 *** 0.8387 0.0540 *** 0.9593 0.0205 ***

log-likelihood 
value 32.5967 129.5798 124.3207

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: A low gamma value suggests that deviations from the frontier are caused by random error. Specifically, 
when gamma is close to zero, deviations mainly stem from noise. Conversely, if gamma is close to one, 
deviations are primarily due to technical inefficiency. When gamma equals one, all deviations from the frontier 
result from inefficiency (Battese & Coelli, 1995; Coelli et al., 2005; Tran et al., 2008).

Source: Authors᾽ work
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Table 5b
Parameter results for common (‘pooled’) frontier and meta-frontier

Common frontier Meta-frontier
Estimates (MLE) Std. error Optimisation results (LP)

(Intercept) -44.1545 2.8525 *** 0.000307
log(K) 11.2289 1.1116 *** 0.002256
log(L) -12.1156 0.4322 *** 0.000292
log(Y) 2.4043 1.0205 *  0.002437
log(Q) 1.9831 0.6229 ** 0.001410
I(0.5 * log(K)^2) -0.9810 0.4178 *  -0.014724
I(0.5 * log(L)^2) -0.7161 0.0939 *** -0.007614
I(0.5 * log(Y)^2) -0.3872 0.2899 -0.005939
I(0.5 * log(Q)^2) -0.2448 0.0728 *** 0.003151
I(log(K) * log(L)) 0.9979 0.0705 *** -0.025507
I(log(K) * log(Y)) -0.3077 0.3482 0.008407
I(log(K) * log(Q)) -0.6501 0.1133 *** 0.000426
I(log(L) * log(Y)) 0.3781 0.1357 ** -0.019277
I(log(L) * log(Q)) -0.0312 0.0452 -0.003933
I(log(Y) * log(Q)) 0.6251 0.0958 *** 0.000835
t -0.0949 0.0855 0.005529
I(t^2) -0.0028 0.0004 *** 0.006275
I(t * log(K)) 0.0046 0.0110 -0.010292
I(t * log(L)) -0.0135 0.0103 0.003544
I(t * log(Y)) 0.0082 0.0061 -0.007160
I(t * log(Q)) 0.0247 0.0086 ** 0.010179
Z_(Intercept) 0.4604 0.2479 .  
Z_LST -1.7977 0.4906 ***
Z_URB 0.3712 0.2413

Z_STR 24.8108 2.3208 ***

Z_END 0.0154 0.0035 ***

Z_USE -4.6519 0.1025 ***

Z_EPR 3.5894 0.4110 ***

sigmaSq 0.0996 0.0070 ***

gamma 1.0000 0.0000 ***
log-likelihood 
value 63.0515

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: The log-likelihood ratio (LR) test compares the ‘pooled’ model, where all regions are combined, to 
an ‘unpooled’ model, where each group has its frontier. Based on our calculated statistics, there is strong 
evidence to suggest that the frontiers of the three regional groups are not the same.

Source: Authors᾽ work
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Across the three groups, capital 
exhibits the most consistent and statistically 
significant association in terms of the 
first-order partial elasticities of water 
productivity. This association is strongest 
for Group 3, where a percentage increase 
in capital corresponds to a rise in water 
productivity of approximately 50%. The 
estimated elasticity for water quality (34.97) 
is positive and statistically significant in the 
first group only (and in the pooled sample).

The results also show the elasticities of 
water productivity in a nonlinear way. For 
instance, the percentage change in water 
productivity with respect to capital varies 
with the level of capital itself. In the case of 
Group 2, the relevant second-order elasticity 
is -2.95, i.e., as the scale of capital increases, 
its enhancing effect on water productivity 
lessens. The second-order elasticities of total 
production follow the same pattern, with 
a negative value for Group 2 but positive 
values elsewhere.

Meanwhile, the influence of capital 
on water productivity diminishes as the 
level of total production climbs, and vice 
versa, for Groups 1 and 3. Concerning 
other statistically significant interaction 
results, for Group 1, the positive association 
between water productivity and water 
quality weakens as the level of capital grows 
(and vice versa). Conversely, the combined 
effect of water quality and output on water 
productivity shows the opposite trend. 

Moreover, the estimated time trend 
can generally be interpreted as the average 
annual rate of technological change (Alem, 
2021). In this study, the corresponding 

parameter for Group 2 is significant 
and negative, suggesting technological 
degradation manifested as a decline in 
water productivity over time. Significant 
parameter values for interaction terms 
involving time imply that technological 
changes affecting water productivity vary 
depending on capital, labour, production, 
or water quality levels.

Regarding the estimation results for the 
inefficiency equation, Table 5a illustrates 
that all potential determinants, except 
resource endowment, influence water use 
efficiency to some extent. However, the 
type of water usage consistently shows a 
statistically significant impact across all 
groups. Resource endowment also emerges 
as a statistically significant influence when 
considering the pooled data in Table 5b. 
Specifically, the impact of LST on water 
use efficiency remains inconclusive, with 
a positive effect observed in Cluster 2 
and a negative effect for the common or 
‘pooled’ frontier. The influence of URB is 
also unclear, showing a highly significant 
positive effect in Cluster 2 and a highly 
negative effect in Cluster 3. STR generally 
positively affects water use efficiency, 
while END shows a positive effect only 
in the common frontier. Conversely, USE 
consistently has a negative effect. EPR 
predominantly exhibits a positive effect. 
Here, it should be clarified that a statistically 
significant positive relationship implies 
that the determinant in question has a 
negative impact (and vice versa), given the 
undesirable nature of inefficiency.
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The descriptive statistics of the TGRs 
calculated for the different groups are 
reported in Table 6.

Cluster 3 leads in terms of TGR, with 
an average value of 0.46. Hence, the 
frontier of Cluster 3 is closer to the meta-
frontier compared to the frontiers of the 
other two clusters. In comparison, Cluster 
1 has an average TGR of 0.30. On average, 
countries in Cluster 1 require over 50% 
more water than those in Cluster 3 to 
attain the same production outcome with 
equivalent labour and capital inputs. Across 
individual observations, TGR values range 
from a minimum of 0.05 in Cluster 1 to a 
maximum of 1.00 in Cluster 3.

Figure 6 displays the frequency 
distributions for the TGRs.

Cluster 1 Cluster 2 Cluster 3
Mean 0.3041 0.3933 0.4598
Std. 
dev. 0.1940 0.1967 0.2208

Min. 0.0455 0.0753 0.1524
Max. 0.8517 0.9227 1.0000
Obs. 90 110 90

Table 6
Descriptive statistics for TGRs

Note: We use the Kuskall-Wallis non-parametric test 
(Kruskal & Wallis, 1952) to assess whether the TGRs 
differ among groups. Based on the corresponding 
result, we strongly reject the null hypothesis that 
TGRs in different groups come from the same 
population. 

Source: Authors᾽ work
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Figure 6. Frequency distributions of TGRs

Source: Authors᾽ work

The three clusters exhibit comparable 
patterns of variation with respect to their 
TGRs. Figure 7 depicts the evolution of 
TGRs for the different groups.

Kruskal-Wallis chi-squared = 25.332, df = 2, p-value 
= 3.157e-06
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The average TGR of all three clusters 
trended upward throughout the entire 
study period, although Cluster 1 almost 
plateaued midway (Figure 7). Cluster 3 
remained steadily ahead of the other two 
clusters and continuously extended its 
lead. This divergence, in the form of a 
widening technology gap, reversed towards 
the end of the timeframe, with Cluster 
1 experiencing sharper growth, whereas 
Clusters 2 and 3 appeared to flatten out. All 
clusters peaked in 2020, the final period 
considered. Cluster 1 reached a TGR of 

0
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Figure 7. Change in average TGRs over time by 
cluster

Source: Authors᾽ work

Table 7
Descriptive statistics for efficiency scores

Group-specific frontiers Common ('pooled') 
frontier Meta-frontier

Cluster 1 Cluster 2 Cluster 3
Mean 0.5567 0.6599 0.6675 0.5199 0.2459
Std. dev. 0.1960 0.3674 0.2544 0.3087 0.2000
Min. 0.2388 0.0875 0.2923 0.0734 0.0193
Max. 0.9956 0.9949 0.9966 0.9998 0.9913

0.45 (compared to a starting value of 0.16 
in 2011), while Clusters 2 and 3 recorded 
values of 0.54 (2011: 0.23) and 0.65 (2011: 
0.24), respectively. 

Table 7 provides an overview of the 
efficiency scores at an aggregated level.

Table 7 illustrates that the countries in 
Clusters 1, 2, and 3 attained group-specific 
mean efficiencies of 0.56, 0.66, and 0.67, 
respectively, compared with the overall 
European mean efficiency of 0.52, based 
on the assumption of a common (‘pooled’) 
technology, and versus a lower mean meta-
frontier efficiency across all clusters of 0.25. 
The greatest variability (with a standard 
deviation of 0.37) is observed in Cluster 2.

Taking the meta-frontier technology 
as a reference, Cluster 1 had an average 
efficiency score of 0.18, while the average 
scores for Clusters 2 and 3 were 0.23 and 
0.33, respectively. BGR recorded the worst 
average group-specific performance in 
Cluster 1, GRC in Cluster 2 and ESP in 
Cluster 3. In terms of the group frontiers, 
the best performers on average were LVA 
(Cluster 1), AUT (Cluster 2) and LUX 
(Cluster 3). EST posted the lowest average 
score for the' pooled' frontier and LUX the 

Source: Authors᾽ work
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highest. In relation to the average meta-
frontier scores, the least and most efficient 
countries were, respectively, EST and LVA 
(Cluster 1), GRC and MLT (Cluster 2), and 
ESP and LUX (Cluster 3). 

Figure 8 presents the average efficiency 
scores of the different groups over time.
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Figure 8. Change in average efficiency scores
Source: Authors᾽ work

Cluster 1’s group-specific average 
efficiency score stayed below those of 
Clusters 2 and 3 over the entire timeframe. 
Cluster 1 peaked in 2012 with an average 
score of 0.59, compared to scores of 0.53 in 
the first and last years studied. Clusters 2 and 
3 had similar scores most of the time, but 
Cluster 3 reached a maximum score of 0.70 
in 2020 (compared to 0.66 in 2011), while 
Cluster 2 had a score of 0.66 (the same as 
in 2011). Concerning the meta-frontier, each 

cluster experienced a continuous upward 
trend in terms of the average efficiency 
score, except Cluster 1, which dropped from 
its highest value of 0.25 in 2019 to 0.24 in 
the 2020 cut-off period. Cluster 3 had the 
highest average efficiency every year, while 
Cluster 1 had the lowest. In addition, Cluster 
3’s incline was considerably steeper over 
the entire period than its two counterparts, 
resulting in a continually diverging score 
band.

FINDINGS AND DISCUSSION

Although water utilisation is deemed 
sustainable in the long term in most of 
Europe, certain regions are at risk of facing 
water scarcity, necessitating efficiency 
gains to prevent seasonal water shortages 
(European Commission, 2020). Moreover, 
regions with low rainfall, high population 
density, or intensive agricultural and 
industrial activity may face sustainability 
issues in the future, especially considering 
that water shortages could be exacerbated by 
climate change impacts on water availability 
(European Commission, 2020). In addition, 
recycling and reuse can enhance water 
system sustainability in Europe (Bronner 
et al., 2022; European Commission, 
2015). While water abstraction exerts the 
most significant pressure on the quantity 
of freshwater resources, a large part 
of the water withdrawn for domestic, 
agricultural, or industrial use is returned 
to the environment and its water bodies, 
albeit often as wastewater with impaired 
quality (European Commission, 2020). 
Thus, besides water use efficiency and 
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corresponding changes in consumption 
practices, a key water management issue 
in Europe concerns drinking water quality 
(European Commission, 2021). 

By highlighting the existence of 
heterogeneity among European countries, 
our results show that the sampled nations 
operate under different conditions. Figure 
9 illustrates the distinct attributes of each 
group concerning the size of the economy, 

the standard of living, and the extent of 
urbanisation and industrialisation. It should 
be noted that, in the context of sustainable 
development, hallmarks of humanity's 
longevity and high civilisation, such as 
economic prowess, improvements in living 
standards through built infrastructure, human 
settlement in cities, and industrialisation, 
are closely related to the issue of water use 
efficiency (United Nations, 2021a).

Figure 9. Cluster characteristics

Note: Cluster 1: Smaller, less advanced, less urbanised, less industrialised economies on average. Cluster 2: 
Middle range for the size of the economy, living standard, urbanisation, and industrialisation. Cluster 3: Larger, 
more advanced, more urbanised, more industrialised economies on average.

Source: Authors᾽ work

Against  the  background of  the 
underlying cluster analysis, our results for 
the TGRs and efficiency scores collectively 
demonstrate a general positive association 
between technological progress and water 
use efficiency. Furthermore, the results for 

the production function reveal that capital 
exhibits the most consistent relationship 
with water productivity. The positive 
influence of capital tends to diminish with 
increasing scale and total production. 
Generally, there is a significant positive 
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linkage between water productivity and 
water quality. Group 2 appears to have 
experienced technological degradation along 
with a decline in water productivity over 
time. Additionally, we find that all potential 

contextual determinants influence water use 
efficiency to some extent. However, only the 
actual type of water usage has a consistent, 
statistically significant impact across all 
groups (Table 8).

Table 8
Influence of contextual factors on water use efficiency 

Factor Current findings Interpretation and comparison with previous 
results (where applicable)

LST

The actual effect of LST (living standard in 
terms of the percentage of the population 
without sanitation facilities) on water 
use efficiency is unclear. For Cluster 2, a 
higher proportion of the population lacking 
sanitation facilities corresponds to greater 
inefficiency, which implies that widening the 
availability of sanitation facilities enhances 
efficiency. However, this relationship is 
reversed in the case of the common frontier. 

In Cluster 2, expanding the proportion of the 
population with sanitation facilities can boost 
efficiency, but this relationship is inverted in 
the context of the pooled sample. Overall, 
this aligns with previous work concerning 
China, which shows that per capita income 
can affect efficiency (Bao & Chen, 2017), 
although the results of Ding et al. (2019) 
refute this claim.

URB

Concerning URB (percentage of the urban 
population), there is a highly significant 
negative effect in Cluster 2, indicating that 
urbanisation is associated with increased 
inefficiency, and a highly significant 
positive effect in Cluster 3, suggesting that 
urbanisation leads to improved water use 
efficiency.

These contrasting effects highlight the 
ambiguous impact of urbanisation on water 
use efficiency. It is akin to the case of 
China, where urbanisation has been shown 
to exert a positive influence (Bao & Chen, 
2017; Zheng et al., 2018) or constitute an 
impediment due to an accompanying rise in 
water consumption and pollution (Ding et al., 
2019).

STR

In terms of economic structure, it is observed 
that STR, i.e., gross value added (GVA) 
represented by agriculture as a percentage 
share of GDP, generally exerts a negative 
effect on water use efficiency. It means 
that economies with a more substantial 
agricultural sector tend to be more 
inefficient, suggesting that the process of 
industrialisation augments efficiency.

Economies with larger agricultural sectors 
tend to be less efficient, implying that 
countries can improve their performance by 
becoming more industrialised. In comparison, 
the process of industrialisation, including 
industrial transformation and upgrading, has 
been found to have both a positive (Bai et 
al., 2017; Zheng et al., 2018) as well as a 
negative (Wang et al., 2018) impact on China.

END

For the pooled data, the resource endowment 
variable END (the amount of renewable 
freshwater resources available per inhabitant) 
exhibits a negative influence. It suggests that 
an excessive abundance of water resources 
imposes a detrimental impact on water use 
efficiency in the case of the common frontier.

Our results substantiate the notion that an 
overabundance of water resources may 
engender complacency in water usage, 
manifesting the existence of a ‘resource 
curse’. In comparison, resource endowment 
is regarded as a significant influence in China 
in some cases (Ding et al., 2018; Zheng et al., 
2018) but not in others (Ding et al., 2019).
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Table 8 (Continue)

Factor Current findings Interpretation and comparison with previous 
results (where applicable)

USE

Considering resource usage as a water use 
efficiency determinant represents a novel 
contribution to the existing body of literature. 
In this context, USE (the percentage share of 
freshwater abstraction for public water supply 
in total freshwater abstraction) is consistently 
associated with reduced inefficiency. Thus, 
our results suggest that a larger public water 
sector exerts a positive influence and is 
linked to increased efficiency.

In Europe, households and manufacturing 
industries are heavy water users, with the 
latter often relying on non-public self-
supply (European Commission, 2020). It is 
also noteworthy that, although household 
water use is generally more uniform due 
to consistent basic needs, it can far exceed 
manufacturing water use in service-dominant 
countries (European Commission, 2020). As 
such, the proportion of public water supply 
partly reflects a country's economic structure.

EPR

The environmental protection variable 
EPR (percentage of terrestrial area under 
protection) predominantly exhibits a 
detrimental impact, meaning that an increase 
in the extent of protected areas is associated 
with heightened inefficiency.

Expanding land designated for nature 
conservation (i.e., protecting terrestrial areas) 
decreases efficiency. With respect to China, 
while environmental regulation can play an 
effective role in enhancing water utilisation 
efficiency in some situations (Ding et al., 
2019; Zheng et al., 2018), such intervention 
may be of little avail in others (Wang et al., 
2018).

Source: Authors᾽ work

CONCLUSION

This study presents a first-of-its-kind pan-
European assessment of water use efficiency 
and sustainability, employing cluster analysis 
and a meta-frontier approach. Moreover, we 
contribute to existing research by integrating 
water quality into the evaluation framework 
and examining the type of resource usage 
as an efficiency determinant. By aligning 
with the objectives of this special issue, 
our research aims to inform responsible, 
impactful, science-based, and border-
transcending resource governance and 
management. By doing so, we strive to 
secure the legacy of our shared, thriving 
civilisation and lay the groundwork for 
enduring socio-economic progress and a 
prosperous future.

The resul ts  conf i rm a  posi t ive 
relationship between technological progress 
and water use efficiency. Our findings also 
demonstrate a general positive association 
between water productivity and quality. Our 
analysis delineates the intricate interplay of 
essential tenets of high civilisation, including 
socio-economic factors such as economic 
scale, living standards, urbanisation, and 
industrialisation, in shaping water use 
efficiency. All examined determinants 
influence efficiency to varying degrees. 
While some aspects remain inconclusive, 
we have gained greater clarity on several 
issues. Specifically, bigger agricultural 
sectors are less efficient, suggesting that 
industrialisation can improve performance. 
Furthermore,  an overabundance of 
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renewable freshwater resources can lead to 
inefficiency, indicating a ‘resource curse’. 
In addition, a larger public water sector 
increases efficiency, while expanding land 
for nature conservation decreases it. 

Our investigation reveals substantial 
technological diversity among European 
countries and varying cause-effect 
relationships concerning water utilisation 
efficiency. I t  underscores the need 
for decentralised solutions to address 
pertinent sustainability challenges based 
on the formulation of water policies and 
management approaches tailored to specific 
local circumstances.

Implications and Recommendation

Investigating water use efficiency and its 
determinants and providing evidence on 
corresponding technology gaps form a 
useful scientific basis for tackling resource 
sustainability challenges. In particular, our 
results illustrate that European countries 
operate under different conditions and 
exhibit considerable technological and 
efficiency heterogeneity. Considering 
these varying circumstances, adopting 
decentralised solutions and tailoring 
best resource stewardship practices for 
individual countries or groups of countries 
is advisable. We are confident that the 
insights gained can inform water policy 
formulation, particularly within the UN’s 
SDG 6 framework on ‘clean water and 
sanitation’ (United Nations, 2024), thereby 
enhancing human well-being and advancing 
the progress of human civilisation.

In the present European context, smaller 
economies, often at nascent development 
stages with limited urbanisation and 
industrialisation, struggle to attain high water 
use efficiency, whereas larger economies 
typically fare better. Moreover, our results 
pertaining to living standards resonate 
with the idea that public commitment to 
human well-being, based on sanitation 
infrastructure investment, acts as a catalyst 
for the progress of societies as they transition 
from a lower to a higher state of development 
(United Nations, 2024). Meanwhile, 
urbanisation emerges as a double-edged 
sword with mixed implications for human 
civilisation, encapsulating a complex 
rapport between humanity and natural 
resources. On the other hand, our analysis 
shows that industrialisation is associated 
with more efficient water use, speaking to 
the improvement of resource management 
systems in the course of modernisation 
(United Nations, 2021a).

Limitation and Outlook

Continuing research may focus more 
dedicatedly on comparing Europe and 
China. Many relevant findings for China 
exist, while the present paper could signal 
the beginning of a similar stream of work 
on Europe. Additionally, future studies may 
explore considerations of the Environmental 
Kuznets Curve (EKC). The EKC concept, 
which proposes that environmental damage 
initially increases and then decreases with 
per capita income (Hamaide, 2022), could 
be applied to Europe, building on previous 
results concerning China (Ding et al., 2019; 
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Wang et al., 2018; Zheng et al., 2018). 
Moreover, although freshwater endowment 
may serve as a proxy for location-specific 
climatic and geographic circumstances 
(European Commission, 2020), it would 
be beneficial to explicitly consider the 
ramifications of such conditions, given that 
efficient water utilisation can support the 
endurance of human high civilisation by 
mitigating climate change threats (United 
Nations, 2021). 

Meanwhile, mirroring humanity’s 
complex relationship with natural resources, 
urbanisation presents a dual narrative, 
both hindering and enhancing water use 
efficiency, thereby posing challenges as 
well as opportunities in preserving human 
high civilisation. The multifaceted nature of 
urbanisation underlines the need for further 
research to unravel the delicate balance 
between urban growth and sustainable water 
management in the interest of humanity. 
In addition, while our findings illustrate 
the imperative of industrialisation for 
improving water use efficiency, affirming 
the transformative potential of evolving 
economic structures in sustainable 
development and safeguarding human 
civilisation, future research could focus 
on how innovative resource use practices 
can propel societies forward (Callejas 
Moncaleano et al., 2021). Moreover, 
while guiding economic growth towards 
sustainability is important for protecting 
our natural habitat and societal well-
being, future studies could explore the 
potential relationship between efficient 
water utilisation and social equity, the latter 

being a key factor in maintaining public 
harmony and preserving cultural values 
(United Nations, 2021b).
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