Universiti Putra Malaysia
Download Latest Complete Journal - JST Vol. 25 (S) Feb. 2017
No.ArticlesDownloads
1
Full Article
(Downloads: 49)
Abstract (Viewed: 7)This paper presents a voltage flicker estimation based on a pair of inter-harmonics analysis method. The proposed algorithm is able to estimate flicker frequency and amplitude changes of a voltage waveform. The correlation of the pair of inter-harmonics, flicker frequency, and amplitude changes are presented and their formulas highlighted. .Experimental results indicate the amplitude of pair of inter-harmonics can detect the voltage flicker. Furthermore, the experimental results are compared with the measurement results obtained by using the Fluke power analyzer (Pst). voltage flicker, inter-harmonics, FFT
2
Full Article
(Downloads: 21)
Abstract (Viewed: 3)Lightning is a natural phenomenon that generates a high electric field during thunderstorm. It has been reported that lightning strikes amid storms can occur around 100 times per second. The atmospheric electric field is an imperative parameter during a thunderstorm. Therefore, monitoring the electric field and its parameters is the best way for local lightning forecast. The electric field monitoring data can validate the accuracy of weather prediction in a local area from meteorology department or by using equipment specially designed to measure this electric field that exists when the phenomenon of lightning occurs. In this paper, the relationship between lightning, air humidity and temperature is discussed to understand the post lightning effect on these electric parameters. Additionally, the characteristics of the parameters are observed and analysed. Lightning, humidity, temperature, atmospheric electric field
3
Full Article
(Downloads: 17)
Abstract (Viewed: 4)This paper presents a modified design of low power recovery circuit in micro-system implanted device to stimulate the human nerve and muscle. The amplitude shift keying ASK was used to modulate data by using operating frequency 6.78MHz ISM industrial scientific medical band to be less invasive to tissue. The proposed system consists of an external part which has ASK modulator and class-E power amplifier with 94.5% efficiency. The internal part has half wave rectifier and voltage regulator to generate very stable 1.8VDC using 0.35um CMOS technology. The Orcad pspice 16.6 and MULTISIM 11 software were used to simulate the design of power recovery and class-E power amplifier respectively. The regulated voltage utilised to power the sub-electronic device implanted inside human body with very stable voltage even change implanted load resistance. The proposed system has 12.5%modulation index and low power consumption. ASK modulator, class-E power amplifier, inductive coupling, rectifiers, LDO low dropout regulator and power recovery
4
Full Article
(Downloads: 12)
Abstract (Viewed: 3)One of the concerns in power system preventive control and security assessment is to find the point where the voltage and frequency collapse and when the system forces a severe disturbance. Identifying the weakest bus in a power system is an essential aspect of planning, optimising and post-event analysing procedures. This paper proposes an approach to identify the weakest bus from the frequency security viewpoint. The transient frequency deviation index for the individual buses is used as the weakest bus identification as well as a frequency security indicator. This approach will help to determine the bus with the worst deviation, which helps to analyse the system disturbance, takes proper control action to prevent frequency failure, and most importantly, observes consumer frequency. The approach is applied to the WSCC 9 bus test system to show the feasibility of the method. Power frequency stability, transient frequency, deviation index
5
Full Article
(Downloads: 8)
Abstract (Viewed: 3)This paper presents an FFT computation minimisation for Motor Current Signature Analysis (MCSA) by reducing sampling frequencies and input data samples. The frequency resolution of an FFT signal depends on the FFT length and the sampling frequency. A diagnosis of the induction motor stator winding short turn using the FFT- based MCSA has shown the performance of various FFT lengths. Preserving frequency resolution is achieved by keeping the same ratio of the sampling frequency to the FFT length. From the experimental results, the FFT length can be decreased from 64K to 8K, 1K, and 512 points respectively. All FFT processors were implemented with Xilinx Spartan-6 FPGA to compare the resource, the speed, and the power consumption. The FPGA implementation of the 512-point FFT achieved BRAM saving of 97 %, slice saving of 26%, power consumption saving of 20% and speed up to187 times compared with the 64K-point FFT. Although the processing gain of the 512-point FFT is 24 dB and decreased from 48.1 dB in the case of the 64K-point FFT, it is enough to classify the short turn fault. FFT; MCSA; Sampling Frequency; Computation Reduction; FPGA
6
Full Article
(Downloads: 14)
Abstract (Viewed: 5)This paper presents an auto grasping algorithm of a proposed robotic gripper. The purpose is to enhance the grasping mechanism of the gripper. Earlier studies have introduced various methods to enhance the grasping mechanism, but most of the works have not looked at the weight measurement method. Thus, with this algorithm, the weight of the object is calculated based on modified Wheatstone Bridge Circuit (WBC) which is controlled by programmable interface controller (PIC) method. Having this approach introduces and improves the grasping mechanism through an auto grasping algorithm. Experimental results show that an auto grasping algorithm based on pressure sensor measurements leads to a more precise grasping measurement and consequently enhance the sensitivity measurement as well as accurate movement calibration. Furthermore, several different grasping objects based on the proposed method are examined to demonstrate the performance and robustness of our approach. Auto grasping algorithm; pressure sensor; grasping mechanism; Wheatstone bridge circuit
7
Full Article
(Downloads: 16)
Abstract (Viewed: 2)A programmable CMOS delay line circuit with microsecond delay range and adjustable duty cycle is proposed. Through circuit simulation, approximately 2µs delay range can be achieved using 10-bit counter operating at a clock frequency of 500MHz. Utilising synchronous counters instead of synchronous latches has significantly reduced the large occupied active silicon area as well as the huge power consumption. The generated coarse time delay has shown excellent linearity and immunity to PVT variations. The proposed CMOS delay line is designed using a standard 0.13µm Silterra CMOS technology. The active layout area is (101 x 142) µm2, and the total power consumption is only 0.1 µW. CMOS delay line, synchronous counter, latches, delay element, delay range, duty cycle, linearity, PVT variations
8
Full Article
(Downloads: 13)
Abstract (Viewed: 2)Controlled humidity environment is of significance in many scientific researches and experiments. In most laboratory-scale atmospheric chambers, an electrical temperature-based control system is used to adjust humidity. Since these chambers are not affordable in every laboratory, other low cost chambers using nitrogen gas or silica gel are used to adjust humidity. In this paper, a mechanism was developed to control the relative humidity in closed lab-scale chambers. Humidification is done by spraying water through a blower fan while de-humidification is by pumping air through silica gel as well as nitrogen gas injection. A Mamdani type fuzzy controller was designed to control the components and relative humidity. The results show the proposed system and controller can adjust and maintain relative humidity from 41% to 100% with maximum overshoot of 1% and the maximum range of error of steady state of 1.2 %. Atmospheric chamber, humidity, silica gel, nitrogen gas, fuzzy controller
9
Full Article
(Downloads: 13)
Abstract (Viewed: 2)Transformer failures lead to interruption of power supply. Therefore, asset management is important to monitor the efficient functioning of transformers. An important approach in asset management is condition assessment whereby the health status of the transformer is assessed via a health index. There are many methods in determining the final value of a health index. This paper examines how different assessment methods can be used in order to come up with the final health index and output of final health index. The output trend shapes are almost the same for Assessment Model A, B and C except for Assessment Model D. There is no strong correlation between the health index and age of the transformer. Generally, the value of health index of the transformer is reflected by its operation and loading history .This paper hence examines the assessment steps and results that will guide the development of a new approach to determine health index value. Transformer, asset management, condition assessment, transformer health index
10
Full Article
(Downloads: 14)
Abstract (Viewed: 2)Top-Oil Temperature (TOT) is one of the basic components to estimate the Hot-Spot temperature (HST) of the transformers. This paper presents an alternative TOT model based on the heat transfer theory that utilises Nonlinear Thermal Resistance (NTR) and Lumped Capacitance (LC) approaches. It is applied in a thermal-electrical analogy and the heat transfer equivalent equation is determined. This model is tested on a measured TOT of 250 MVA ONAF and 400 MVA ONAF transformers obtained from IEC 60076-7 and previous research. A comparison of TOT is carried out with the existing models IEC 60076-7 exponential and IEEE Loading Guide clause 7 methods. It is found that the thermal model based on the NTR and LC approach could determine the measured TOT closer than the existing methods available in the standards. Top-oil temperature, thermal model, transformers
11
Full Article
(Downloads: 11)
Abstract (Viewed: 2)Soil plays an important role in ground designing. Engineers normally consider only soil resistivity under normal or steady state condition when designing the grounding system. Under certain circumstances such as lightning, electrical response of the soil will change accordingly and thus, the performance of the grounding system will be affected. The purpose of this study is to investigate the effect of moisture content on the electrical behaviour of sand and clay under high impulse voltage condition. Both soil samples are dried in the oven at 110 ± 5°C to remove the water content until became 0%. The samples are subjected to 30 shots of standard (1.2/50µs) lightning impulse voltage for both positive and negative impulse polarities. This is followed by moistening the samples with 5% amount of water over the volume of the samples. The corresponding V50% for both sand and clay was calculated and the value obtained was converted to standard atmospheric condition. The voltage at breakdown and time to breakdown for each soil sample was analysed a statistical analysis conducted for these two parameters to determine if type of soil and moisture content have an effect on the breakdown voltage. In general, it was found that clay is more efficient in neutralising high impulse voltage than sand likely due to the former's low resistivity and porosity. Breakdown voltage, soil, electrical grounding, sand, clay
12
Full Article
(Downloads: 15)
Abstract (Viewed: 2)Shunt active power filter (SAPF) is the most effective solution for current harmonics. In its controller, DC-link capacitor voltage regulation algorithm with either proportional-integral (PI) or fuzzy logic control (FLC) technique has played a significant role in maintaining a constant DC voltage across all the DC-link capacitors. However, PI technique performs poorly with high overshoot and significant time delay under dynamic state conditions, as its parameters are difficult to be tuned without requiring complete knowledge of the designated system. Although FLC technique has been developed to overcome limitations of PI technique, it is mostly developed with high complexity thereby increases computational burden of the designed controller. This paper presents a fuzzy-based DC-link capacitor voltage regulation algorithm with reduced computational efforts to enhance performance of three-phase three-level neutral-point diode clamped (NPC) inverter-based SAPF in overall DC-link voltage regulation. The proposed method is called effort-reduction FLC technique. The proposed algorithm is developed and evaluated in MATLAB-Simulink. Moreover, conventional algorithm with PI technique is tested for comparison purposes. Simulation results have confirmed improvement achieved by the proposed algorithm in comparison to the conventional algorithm. Active power filter, current harmonics, DC-link voltage control, fuzzy logic control (FLC), multilevel inverter
13
Full Article
(Downloads: 8)
Abstract (Viewed: 1)Space Vector Pulse Width Modulation (SVPWM) method is widely used as a modulation technique to drive a three-phase inverter. It is an advanced computational intensive method used in pulse width modulation (PWM) algorithm for the three-phase voltage source inverter. Compared with the other PWM techniques, SVPWM is easier to implement, thus, it is the most preferred technique among others. Mathematical model for SVPWM was developed using MATLAB/ Simulink software. In this paper, the interface between MATLAB Simulink with the three-phase inverter by using Arduino Uno microcontroller is proposed. Arduino Uno generates the SVPWM signals for Permanent Magnet Synchronous Motor (PMSM) and is described in this paper. This work consists of software and hardware implementations. Simulation was done via Matlab/Simulink software to verify the effectiveness of the system and to measure the percentage of Total Harmonic Distortion (THD). The results show that SVPWM technique is able to drive the three-phase inverter with the Arduino UNO. SVPWM, Arduino UNO, PMSM, Matlab/Simulink
14
Full Article
(Downloads: 10)
Abstract (Viewed: 2)The grounding system of a lightning protection scheme is designed basically to avoid arcing and dangerous step potentials. The grounding impedance of the system varies depending on soil structure and frequency. This paper describes the effect of harmonic impedance (also called frequency dependence of soil) on potential distribution under lightning strike to a metal tower with single grounding path, for different soil types. The results show that the peak value of ground potential rise (GPR) and step voltage (SP) may reach extremely hazardous values even at distances in the order of 90 m from the tower footing, especially when soil resistivity is high. Hence, we emphasise that, in contrast to power grounding, when designing of grounding systems that are meant to handle transient or high frequency currents as well, the frequency dependent soil parameters should be considered to avoid hazardous situations, especially at locations with a high probability of lightning strikes such as metal towers. Lightning, frequency dependence of soil, grounding, transient impedance, GPR, SP
15
Full Article
(Downloads: 9)
Abstract (Viewed: 2)In this paper, cap and pin porcelain insulator was studied under an environment with different levels of humidity. The electric field strength and voltage distribution profile along the insulator string was simulated using a computational software package. In this study, ANSYS Maxwell based on the Finite Element Method (FEM) was used to simulate the short standard insulator string. The short standard insulator string was modelled as a five-unit cap and pin porcelain insulator that was stacked according to the IEC 60383 standard. Different humidity levels measured using relative humidity is applied to the insulator. From this simulation, the locations within the insulator under high electric field stress are identified when different humidity is applied. Porcelain Insulator, electric field strength distribution, humidity
16
Full Article
(Downloads: 10)
Abstract (Viewed: 2) Visual inspection to locate metals embedded in walls or floors is impractical. Detection of these metals can only be done with a proper metal detection. Accordingly, the development of a magnetic imaging system based on giant magneto-resistance (GMR) sensors is presented for metal shape detection. This system is based on magnetic flux leakage testing (MFLT) principle for detecting the shape of ferromagnetic material specimens. The imaging system is constructed using 21 linear GMR sensors array as signals sensing unit (SSU). In this study, a few ferromagnetic SS400 mild steels specimens in various shapes are used as specimens. Image produced confirm system functionality in detecting and evaluating metal shapes. Magnetic flux leakage testing (MFLT), giant magneto-resistance (GMR) sensors, shape evaluation
17
Full Article
(Downloads: 11)
Abstract (Viewed: 2) Discrete Wavelet Transform (DWT)-based image compression techniques have been utilized in most of the earth observation (EO) satellites launched during the last few decades, since they have proved to be more efficient than other methods used previously with remote sensing multispectral imaging payloads. The efficiency of these techniques is mainly due to their high compression ratio that can be achieved while maintaining the quality of the compressed image. Also, they are considered multi-resolution compression techniques. However, these techniques are considered computationally demanding, due to their complex and sophisticated hardware. Due to the limited computational resources available on-board small satellites, they are considered one of the important criteria when choosing the satellite image compression method, along with the compression ratio and quality of the reconstructed image. Hence, an alternative DWT-based method was proposed, developed and implemented in this work with the aim of reducing the computational resources on-board a small satellite, replacing the regular DWT thresholding and quantization processes that are usually used to achieve lossy compression, with the zero-padding technique. This method will also help to control the change in the compression ratio and quality of the reconstructed image according to the end-user's scientific needs of the satellite image. The results of this work indicated, objectively and subjectively, that a decrease in the computational resources required on-board satellites was achieved by decreasing the processing time needed to complete the compression, without a significant difference in quality of the image reconstructed at the ground station. Satellite images, Remote sensing, Image compression, Discrete Wavelet Transform
18
Full Article
(Downloads: 10)
Abstract (Viewed: 2) In this paper, we proposed a new readout circuit in order to improve measurement output while reading the grouped resistive value in matrix array form. The purpose of having this circuit is to overcome the main problem in applying piezoresistive pressure sensor array for foot plantar application. This new approach is called Nodal Array Approach (NAA), a modified version of Wheatstone Bridge Circuit based on nodal analysis technique using Kirchcoff Current Law. The NAA calculates the sensors' resistance values by solving simultaneous equations from reading voltages of the proposed readout circuit. Therefore, it is found that the readout circuit connection is of low complexity as it only uses resistive element as the major component of reading technique with only four iterations involved for each voltage nodes. Through simulation results, it shows that NAA is able to achieve high accuracy in obtaining a sensor's resistance value by adhering to several limitations in order to avoid miscalculation (< 5% average calculation error). Resistive readout circuit, resistive sensor array, foot plantar application
19
Full Article
(Downloads: 10)
Abstract (Viewed: 2) The development of Transparent Solar Cells (TSC) has become the main focus of solar energy research in recent years. The TSC has a number of applications and make use of unexploited space such as skyscraper windows. In this paper, TSC is fabricated using commercially available titanium dioxide (TiO2) P25 to make a paste, which is deposited on FTO glass using screen printing and spin coating methods. The effects of the thickness of the TiO2 film on transparency are examined. The paste is synthesised in the Cleanroom and used in both methods of deposition. The final cell fabrication is a Dye sensitised solar cell (DSSC). The obtained transparency of the FTO glass is 83%, and after the deposition of TiO2 it is reduced to less than 80%. The overall transparency of the DSSC, which was made using the spin coating method, is 70% with an Isc of 9.5 mA and Voc 853mV. Transparent, Solar cell, TiO2, screen printing, spin coating
20
Full Article
(Downloads: 9)
Abstract (Viewed: 2) This paper presents a transmission line (TL) modelling which is based upon vector fitting algorithm and RLC passive filter design. Frequency Response Analysis (FRA) is utilised for behaviour prediction and fault diagnosis. The utilities of the measured FRA data points need to be enhanced with suitable modelling category to facilitate the modelling and analysis process. This research proposes a new method for modelling the transmission line based on a rational approximation function which can be extracted through the Vector Fitting (VF) method, based on the frequency response measured data points. A set of steps needs to be implemented to achieve this by setting up an extracted partial fraction approximation, which results from a least square RMS error via VF. Active and passive filter design circuits are used to construct the model of the Transmission line. The RLC design representation was implemented for modelling the system physically while MATLAB Simulink was used to verify the results. Transmission lines modelling, vector fitting method
21
Full Article
(Downloads: 10)
Abstract (Viewed: 2) Exoskeleton Robot is one of the most significant examples of human-oriented robotic devices. Nevertheless, the main challenge remains the complexity of their mechanical design and human-robot interfaces. This paper is an outcome of a research to model and to simulate the support of mobility of an elderly people using exoskeleton. Exoskeleton is developed in order to complement the corporal deficiencies of an elderly person in standing up and sitting down. When the natural joint torques is integrated with the exoskeleton's torque the result is in an overall torque that is comparable to that of a physically normal person. This work focuses on standing-up and sitting-down movements. Appropriate simulation models are formulated and their performances examined against measured data. The results with PID control show that at different speed of standing up and sitting down, the joint torques can be compromised. This is done within allowable limits. Exoskeleton, humanoid model, PID control, Joint Torque International Conference on Electrical & Electronic Technology 2016
22
Full Article
(Downloads: 9)
Abstract (Viewed: 2) Detection and quantification of DNA is critical to many areas of life sciences and health care, from disease diagnosis to drug screening. The transduction of DNA through electrochemical methods have a fast response rate and with a conductometric device like the silicon nanowire which can be fabricated to have a similar diameter of the DNA molecule being targeted, detection is real-time. Critical to this is the interfacing of a current-source and an amplifier capable of achieving a maximum of 10 pico ampere input bias. In this project, we fabricated a silicon nanowire using the top down approach and built a circuit that can mimic the output signal as low as 12 nA and achieved a gain of 1 million to be interfaced with the nanowire for real-time DNA detection. Silicon nanowire, nanoelectronics, interface circuit, DNA detection
23
Full Article
(Downloads: 10)
Abstract (Viewed: 2)The core losses in a three phase transformer can be significantly reduced by improving the core joint geometry. The researchers were applied numerous types of T-joint designs in order to reach the optimum design that can be used in three phase transformer to reduction the losses. Two types of T-joint design are presented in this paper; T-joint with 90° butt-lap design and T-joint with 45° mitered design. A 3-phase distribution transformer was simulated in 3D using Ansys Maxwell software. The core loss for a three-leg three phase transformer rated 1000 KVA and the flux density distribution are investigated. The simulation results show the core losses were increased up to 3% and the flux density was increased to reach more than 22% flux density become higher when using T-joint with 90° butt-lap design as compared with T-joint with 45° mitered design. Core loss, power transformer, joints design, flux distribution
24
Full Article
(Downloads: 10)
Abstract (Viewed: 2) This study presents the sensitivity of graphene nanoribbon (GNR) when exposed to ammonia gas at room temperature. Alumina were used as a substrate and coated with GNR as sensing film for ammonia gas detection. Four different concentration of GNR in the category of maximum, high, low, and minimum were prepared. Each category of GNR will be dispersed on alumina substrate with area of 1cm² and 4cm². 30nm of gold contacts are sputtered on both ends of the sensing film. The ammonia gas can be detected by measuring the changes in resistance. The GNR as ammonia sensor shows good responses at room temperature. In repeatability test, maximum GNR shows least variation when exposed to ammonia with the value of 1.01% (4cm²) and 2.12% (1cm²). In a sensitivity test, 0.25% to 1.00% of ammonia gas was used and tested on maximum GNR. Maximum GNR on 4cm² substrate shows higher sensitivity as compared to 1cm². Reaction time of GNR on ammonia gas decreased as the concentration of ammonia increased. Larger surface area of sensing element required lesser reaction time. GNR, alumina substrate, ammonia, sensitivity
25
Full Article
(Downloads: 7)
Abstract (Viewed: 1)Preventive tests and diagnosis of in-service power transformer are important for early fault prediction and increased reliability of electricity supply. However, some existing diagnostic techniques require transformer outage before the measurement can be performed and need expert knowledge and experiences to interpret the measurement results. Other measurement techniques such as chemical analyses of insulating oil may cause significant variance to measurement results due to different practices in oil sampling, storage, handling and transportation of oil. A cost-effective measuring technique, which is simple, providing fast and an accurate measurement results, is therefore highly required. The extended application of Polarisation and Depolarisation (PDC) measurement for characterisation of different faults conditions in-service power transformer has been presented in this paper. Earlier studies on polarisation and depolarisation current of oil samples from in-service power transformer shows that depolarisation has provided significant information about the change of material properties due to faults in power transformer. In this paper, a new approach based on Depolarisation Current Ratio Index (DRI) was developed for identifying and classifying different transformer fault conditions. The DRI at time interval of 4s to 100s was analysed and the results show that DRI of depolarisation current between 5/100s and 10/100s provides higher correlation on the incipient faults in power transformer. Transformer, fault analysis, depolarisation current, ratio index analysis
26
Full Article
(Downloads: 11)
Abstract (Viewed: 3) Tuberculosis (TB) is the second biggest killer disease after HIV. Therefore, early detection is vital to prevent its outbreak. This paper looked at an automated TB bacteria counting using Image Processing technique and Matlab Graphical User Interface (GUI) for analysing the results. The image processing algorithms used in this project involved Image Acquisition, Image Pre-processing and Image Segmentation. In order to separate any overlap between the TB bacteria, Watershed Segmentation techniques was proposed and implemented. There are two techniques in Watershed Segmentation which is Watershed Distance Transform Segmentation and Marker Based Watershed Segmentation. Marker Based Watershed Segmentation had 81.08 % accuracy compared with Distance Transform with an accuracy of 59.06%. These accuracies were benchmarked with manual inspection. It was observed that Distance Transform Watershed Segmentation has disadvantages over segmentation and produce inaccurate results. Automatic counting of TB bacteria algorithms have also been proven to be less time consuming, contains less human error and consumes less man-power. Automated bacteria counting, Image Processing, Watershed Segmentation, Graphical User Interface
27
Full Article
(Downloads: 9)
Abstract (Viewed: 2) This paper discusses the harmonic analysis of the AC-to-DC uncontrolled converters commonly used in electric vehicles charging station. The aim of this paper is to model and simulate different rectifier models in addition to explaining the differences in input current harmonics, the total Harmonic Distortion (THD) as well as the power factor (pf). The converter configurations include single-phase bridge, 6-pulse and 12-pulse rectifier circuits. The single phase is normally used for electric scooter charging, while three-phase converters can be used for both electric bus and car charging. The circuit configurations of the rectifiers were modelled and simulated using Matlab R2014a to achieve the objective of the study. The results revealed that the THD levels were extremely high which is unacceptable if the system is connected to the utility grid. Harmonic analysis, AC to DC converters, electric vehicles
28
Full Article
(Downloads: 9)
Abstract (Viewed: 3)Contaminated and ageing transmission line insulators often suffer from temporary or permanent loss of their insulating properties due to flashover resulting in power system failure. Surface discharges are precursors to flashover. To pre-empt any occurrence of flashovers, utility companies monitor the conditions of their insulators. There are numerous insulator surface monitoring techniques such as Leakage Current, Acoustics, and Infrared. However, these techniques may not be suitable for in-situ condition monitoring of the insulators as they are prone to noise, affected by environmental conditions or contact methods. Monitoring of the UV signals emitted by the surface discharges of these insulators has been reported to be a promising technique. However, comprehensive studies on this technique is lacking, especially on aged insulators. This paper investigated the UV signals of contaminated and aged insulators detected during surface discharge activities using UV pulse method. The time and frequency domain of the UV signals were analysed for a group of insulator samples having varying levels of contamination and phases of ageing. Results show that there is a strong correlation between the contamination level and ageing of the insulators with the amplitude and harmonic components of the UV signals. This correlation can useful to monitor in-service insulator surface conditions. UV pulse method, UV pulse sensor, surface discharge, THD, discharge intensity
29
Full Article
(Downloads: 14)
Abstract (Viewed: 8)Digital predistortion is one of the most widely used techniques to linearize a power amplifier (PA) to reduce the error vector magnitude (EVM) distortion and spectral regrowth. By far, the lookup table (LUT) predistorters are most frequently used scheme to mitigate the effects of non-linear power amplifier. In this paper, a new algorithm of joint-polynominal LUT predistorter which attains the best linearization performance is proposed. The algorithm employs the hermite interpolation LUT, which has a higher accuracy of interpolation. Simulation results show that the proposed method provides a better rejection of EVM distortion and an improvement of 30-40% of adjacent channel leakage ratio (ACLR) for the wideband code division multiple access at a minimal memory usage. Predistortion, linearization, lookup table, power amplifier, non-linear distortion
30
Full Article
(Downloads: 8)
Abstract (Viewed: 2)Multimode multiband connectivity has become a de-facto requirement for smartphones with 3G WCDMA/4G LTE applications. In transceivers, multiband operation is achieved by selecting an output from two or more signal path targeting for a specific frequency range in parallel or by using switched capacitor/inductor. In this paper, design methodology of 280nm CMOS switch is presented. Design optimization of RF CMOS switch is presented which is deciding proper selection of CMOS transistor parameters and switch size as per external circuit parameters. The CMOS switch of a 5-transistor stack with W/L=1200µm/280nm provides insertion loss < 0.6dB and isolation loss >14dB. The switches designed when implemented in a multiband power amplifier (PA) exhibits 36dB gain at 1900MHz high-band and 34.5dB gain at 900MHz low-band with 27.5dBm peak power at both bands. The switch design methodologies presented in this paper should be of use in designing various blocks in emerging multiband transceiver applications. CMOS RF switch, insertion loss, isolation loss, multiband power amplifier, Long Term Evolution (LTE)
31
Full Article
(Downloads: 7)
Abstract (Viewed: 1)A new Nonlinear Dynamic Inverse (NDI) method is proposed to minimise the ripple torque in an induction motor. This method is based on field oriented with space vector pulse width modulation (SVPWM). The nonlinear dynamic inverse controller cancelled a non-desirable response of the induction motor and enhancing the performance. This cancellation attempts by careful nonlinear algebraic equations. First, a mathematical model of induction motor and decoupling between two inputs have achieved. Then the desired new dynamic is derived from implementing the proposed nonlinear dynamic inverse controller (NDIC) technique that reserves some benefits such as fast torque control, minimum ripple torque, and fast speed response. Also, the proposed method significantly reduced the torque ripple which is the major concerns of the classical hysteresis-based in direct torque control (DTC) and feedback linearization control (FLC) scheme and have an effect on the stator current distortion. Finally, the simulation results with MATLAB/Simulink achieved for a 2-hp induction motor (IM) drive. The results are veri?cation proved that the proposed (NDI-SVPWM) system achieves smaller torque ripple about 0.4% and faster torque response than the conventional SVM-based on proportional integral (PI-DTC) method. Dynamic inverse, induction motor, ripple torque
32
Full Article
(Downloads: 9)
Abstract (Viewed: 1)In this paper, the challenge of harmonic injection mitigation becomes critical with the massive use of inverters in electrical distribution systems that has been discussed and analyzed. Currently, between the inverter and the grid, L, LC or LCL filters is often used to mitigate the current harmonic. Further, filter connection in both delta-to-star or star-to-delta transformer for state space model of LC filter couplings with impedance is obtained in this paper and it also talked about the different passive damping techniques that been used to suppress the resonance effect on the filter. The effect of series and parallel damping resistor techniques that impact filtering and stability are also been analyzed and discussed. At the end, the simulation results show that LCL filter with parallel damping resistor achieves best performance compared on those for L, LC, or LCL with series damping resistor while at the same time enhancing the smoothness of the signal output while at the same time reducing the percentage of total harmonic distortion between inverter-grid connection.Series Damping Resistor (SDR), Parallel Damping Resistor (PDR), Voltage Source Inverter (VSI)
33
Full Article
(Downloads: 14)
Abstract (Viewed: 4)This paper presents the chaotic pulse train (CPT) waveforms of the vertical electric field generated by lightning observed in Malaysia. Focusing on the position where these electric field changes occur in a number of cloud to ground (CG) flashes, these CPTs were detected in different ways of occurrences, durations, intensities and amplitudes. Seventy-six chaotic pulse trains were found in this study from a sum of 172 CG flash records from three thunderstorm days. The fast field antenna was employed to do the field measurements. As opposed to the typical occurrence of chaotic pulse trains prior to subsequent strokes as reported in the literature, this study has found chaotic pulse trains occurring in different places along the CG electric field waveforms. Preliminary breakdown pulses, return stroke, chaotic pulse trains, electric field change, Position
34
Full Article
(Downloads: 12)
Abstract (Viewed: 1)Magnetic actuator driven switchgear is a new medium voltage switchgear technology. In this switchgear, the conventional spring mechanism which is used to operate the circuit breaker is replaced with a magnetic actuator mechanism. The suitability of this technology in the Malaysian utility network specifically in highly loaded areas with frequent switching was assessed via a field evaluation. Preliminary results indicated that magnetic actuator driven switchgear perform commendably on the safety aspect, on-site performance monitoring and online diagnostic test results. However, there are several concerns that need to be addressed such as the ease of installation, substation system requirements, high life cycle cost and reliability of components, before this technology can be used widely. Magnetic actuator, medium voltage switchgear, condition monitoring, life cycle
35
Full Article
(Downloads: 19)
Abstract (Viewed: 2)In recent years, vegetable oil such as Palm Oil (PO) has been identified as a potential alternative dielectric insulating fluid for transformers. It is biodegradable, non-toxic and has high flash and fire points. In this paper, a study on the positive lightning impulse breakdown voltages of PO under non-uniform field is carried out. The testing was carried out using needle-plane electrodes configuration at gap distances of 25 mm and 50 mm. Rising voltage, 1 and 3 shots per step testing methods were used and 3 types of Refined Bleach and Deodorized Palm Oil (RBDPO) and Mineral Oil (MO) were examined. It was found there is no significant effect on the breakdown voltages of all samples. The breakdown voltages of all RBDPO at 50% probability are comparable with MO. At 1% probability and gap distance of 50 mm, the breakdown voltages of all RBDPO are lower than MO. Lightning breakdown voltage, non-uniform field, palm oil, transformers

BACK
Online Submission| Call for Papers| Special Issues| Subscribe Journals| Resources| Site Map| 907709