e-ISSN 2231-8526
ISSN 0128-7680
Maryam Firas Al-Baldawi, Farah Nora Aznieta Abdul Aziz, Al Ghazali Noor Abbas, Noor Azline Mohd Nasir and Norsuzailina Mohamed Sutan
Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024
DOI: https://doi.org/10.47836/pjst.32.S5.03
Keywords: Fresh properties, geopolymer concrete, hybrid fiber, mechanical properties, Scientometric analysis
Published on: 30 October 2024
Hybrid fibers are an interesting addition to reinforce geopolymer-based composites due to their advantages over single-fiber reinforcement. The performance of hybrid fibers is dependent on the fibers'' composition, type, properties, length, and volume fraction. Therefore, this review discusses the state-of-the-art hybrid fiber-reinforced geopolymer composites (HFRGC) through two approaches: scientometric analysis and conventional review of HFRGC based on data extracted from Scopus from 2013 until 2023. The scientometric analysis was carried out by adopting VOS Viewer software and focuses on the annual publication of documents, top publication sources, co-occurrence keywords, researchers, top-cited papers, and countries. In contrast, the desk study refers to experimental data on the fresh properties and compressive, tensile, and flexural properties of HFRGC. This review output aids researchers in networking, promoting cooperative research, exchanging ideas, and creating joint ventures among researchers of HFRGC worldwide. The performance of HFRGC obtained from the desk study showed the potential of HFRGC as an option for a greener composite that will benefit the construction industry.
Abbas, A. G. N., Aziz, F. N. A. A., Abdan, K., Nasir, N. A. M., & Huseien, G. F. (2022). A state-of-the-art review on fibre-reinforced geopolymer composites. Construction and Building Materials, 330(January), 127187. https://doi.org/10.1016/j.conbuildmat.2022.127187
Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, 17(April), e01234. https://doi.org/10.1016/j.cscm.2022.e01234
Alkadhim, H. A., Amin, M. N., Ahmad, W., Khan, K., Al-Hashem, M. N., Houda, S., Azab, M., & Baki, Z. A. (2022). Knowledge mapping of the literature on fiber-reinforced geopolymers: A scientometric review. Polymers, 14(22), 5008. https://doi.org/10.3390/polym14225008
Alrefaei, Y., & Dai, J. G. (2018). Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Construction and Building Materials, 184, 419-431. https://doi.org/10.1016/j.conbuildmat.2018.07.012
Alwesabi, E. A. H., Abu Bakar, B. H., Alshaikh, I. M. H., Abadel, A. A., Alghamdi, H., & Wasim, M. (2022). An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete. Structures, 37(January), 379-388. https://doi.org/10.1016/j.istruc.2022.01.025
Amin, M. N., Ahmad, W., Khan, K., & Ahmad, A. (2022). Steel fiber-reinforced concrete: A systematic review of the research progress and knowledge mapping. Materials, 15(17), 6155. https://doi.org/10.3390/ma15176155
Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270, 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857
Arunkumar, K., Muthukannan, M., Sureshkumar, A., Chithambarganesh, A., & Rangaswamy Kanniga Devi, R. (2022). Mechanical and durability characterization of hybrid fibre reinforced green geopolymer concrete. Research on Engineering Structures and Materials, 8(1), 19-43. https://doi.org/10.17515/resm2021.280ma1604
Asrani, N. P., Murali, G., Parthiban, K., Surya, K., Prakash, A., Rathika, K., & Chandru, U. (2019). A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Construction and Building Materials, 203, 56-68. https://doi.org/10.1016/j.conbuildmat.2019.01.072
Bakthavatchalam, K., & Rajendran, M. (2021). An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Materials Today: Proceedings, 46, 8494-8501. https://doi.org/10.1016/j.matpr.2021.03.506
Baziak, A., Pławecka, K., Hager, I., Castel, A., & Korniejenko, K. (2021). Development and characterization of lightweight geopolymer composite reinforced with hybrid carbon and steel fibers. Materials, 14(19), 5741. https://doi.org/10.3390/ma14195741
Chadegani, A. A., Salehi, H., Md Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of science and Scopus databases. Asian Social Science, 9(5), 18-26. https://doi.org/10.5539/ass.v9n5p18
Chen, K., Wu, D., Chen, H. X., Zhang, G., Yao, R., Pan, C., & Zhang, Z. (2021a). Development of low-calcium fly ash-based geopolymer mortar using nanosilica and hybrid fibers. Ceramics International, 47(15), 21791-21806. https://doi.org/10.1016/j.ceramint.2021.04.196
Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021b). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496
Chen, Y., Lin, M., & Zhuang, D. (2022). Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 297(February), 133932. https://doi.org/10.1016/j.chemosphere.2022.133932
Cheng, Z., Liu, Z., Hao, H., Lu, Y., & Li, S. (2022). Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers. Construction and Building Materials, 342(PB), 128090. https://doi.org/10.1016/j.conbuildmat.2022.128090
Chithambar Ganesh, A., & Muthukannan, M. (2019). Experimental study on the behaviour of hybrid fiber reinforced geopolymer concrete under ambient curing condition. IOP Conference Series: Materials Science and Engineering, 561(1), 012014. https://doi.org/10.1088/1757-899X/561/1/012014
Daniel, A. J., Sivakamasundari, S., & Abhilash, D. (2017). Comparative study on the behaviour of geopolymer concrete with hybrid fibers under static cyclic loading. Procedia Engineering, 173, 417-423. https://doi.org/10.1016/j.proeng.2016.12.041
Farooq, M., Bhutta, A., & Banthia, N. (2019). Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cement and Concrete Composites, 103(January), 183-192. https://doi.org/10.1016/j.cemconcomp.2019.05.004
Feng, J., Yin, G., Tuo, H., Wen, C., Liu, Z., Liang, J., & Zhang, Y. (2021). Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete. Construction and Building Materials, 304(April), 124559. https://doi.org/10.1016/j.conbuildmat.2021.124559
Firas, A. B. M., Aziz, F. N. A. A., Abbas, A. G. N., Nasir, N. A. M., & Safiee, N. A. (2024). Thermal performance of natural fiber-reinforced geopolymer concrete. In N. Sabtu (Ed.), Lecture Notes in Civil Engineering (Vol. 385, pp. 151-162). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6018-7_11
Gao, X., Yu, Q. L., Yu, R., & Brouwers, H. J. H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures, 50(2), 165. https://doi.org/10.1617/s11527-017-1030-x
Geboes, Y., Katalagarianakis, A., Soete, J., Ivens, J., & Swolfs, Y. (2022). The translaminar fracture toughness of high-performance polymer fibre composites and their carbon fibre hybrids. Composites Science and Technology, 221(February), 109307. https://doi.org/10.1016/j.compscitech.2022.109307
Gu, M., Ahmad, W., Alaboud, T. M., Zia, A., Akmal, U., Awad, Y. A., & Alabduljabbar, H. (2022). Scientometric analysis and research mapping knowledge of coconut fibers in concrete. Materials, 15(16), 5639. https://doi.org/10.3390/ma15165639
Guler, S., & Akbulut, Z. F. (2022). Effect of high-temperature on the behavior of single and hybrid glass and basalt fiber added geopolymer cement mortars. Journal of Building Engineering, 57(May), 104809. https://doi.org/10.1016/j.jobe.2022.104809
Guo, L., Wu, Y., Xu, F., Song, X., Ye, J., Duan, P., & Zhang, Z. (2020). Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Composites Part B: Engineering, 183(November 2019), 107689. https://doi.org/10.1016/j.compositesb.2019.107689
Heweidak, M., Kafle, B., & Al-Ameri, R. (2022). Influence of hybrid basalt fibres’ length on fresh and mechanical properties of self-compacted ambient-cured geopolymer concrete. Journal of Composites Science, 6(10), 292. https://doi.org/10.3390/jcs6100292
Hosseini, M. R., Martek, I., Zavadskas, E. K., Aibinu, A. A., Arashpour, M., & Chileshe, N. (2018). Critical evaluation of off-site construction research: A Scientometric analysis. Automation in Construction, 87(January), 235-247. https://doi.org/10.1016/j.autcon.2017.12.002
Humur, G., & Çevik, A. (2022). Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating–cooling cycles. Construction and Building Materials, 326, 126846. https://doi.org/10.1016/j.conbuildmat.2022.126846
Junior, J., Saha, A. K., Sarker, P. K., & Pramanik, A. (2021). Workability and flexural properties of fibre-reinforced geopolymer using different mono and hybrid fibres. Materials, 14(16), 4447. https://doi.org/10.3390/ma14164447
Kan, L., Zhang, L., Zhao, Y., & Wu, M. (2020). Properties of polyvinyl alcohol fiber reinforced fly ash based engineered geopolymer composites with zeolite replacement. Construction and Building Materials, 231, 117161. https://doi.org/10.1016/j.conbuildmat.2019.117161
Khan, M. Z. N., Hao, Y., Hao, H., Shaikh, F. U. A., & Liu, K. (2018). Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests. Construction and Building Materials, 185, 338-353. https://doi.org/10.1016/j.conbuildmat.2018.07.092
Khan, M. Z. N., Hao, Y., Hao, H., & Shaikh, F. uddin A. (2019). Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cement and Concrete Composites, 104, 103343. https://doi.org/10.1016/j.cemconcomp.2019.103343
Kozub, B., Bazan, P., Mierzwiński, D., & Korniejenko, K. (2021). Fly-ash-based geopolymers reinforced by melamine fibers. Materials, 14(2), 1-13. https://doi.org/10.3390/ma14020400
Kumar, R., Suman, S. K., & Sharma, M. (2019). Laboratory investigation on the synthesis and mechanical characterization of fiber reinforced geopolymer concrete. Materials Today: Proceedings, 32, 268-273. https://doi.org/10.1016/j.matpr.2020.01.360
Lan, T., Meng, Y., Ju, T., Chen, Z., Du, Y., Deng, Y., Song, M., Han, S., & Jiang, J. (2022). Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient - A review. Resources, Conservation and Recycling, 182(March), 106308. https://doi.org/10.1016/j.resconrec.2022.106308
Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16(January), e00894. https://doi.org/10.1016/j.cscm.2022.e00894
Lin, J. -X., Chen, G., Pan, H.-S., , Wang, Y.-C., Guo, Y. Chang, & Jiang, Z.-X. (2023). Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics. Composite Structures, 323(July), 117437. https://doi.org/10.1016/j.compstruct.2023.117437
Matsimbe, J., Dinka, M., Olukanni, D., & Musonda, I. (2023). Bibliometric trends of geopolymer research in Sub-Saharan Africa. Materials Today Communications, 35(April), 106082. https://doi.org/10.1016/j.mtcomm.2023.106082
Meho, L. I. (2019). Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics, 13(1), 419-433. https://doi.org/10.1016/j.joi.2019.02.006
Mousavinejad, S. H. G., & Sammak, M. (2021). Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 32(April), 1420-1427. https://doi.org/10.1016/j.istruc.2021.03.112
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280-294. https://doi.org/10.1016/j.conbuildmat.2017.03.059
Preda, N., Costas, A., Lilli, M., Sbardella, F., Scheffler, C., Tirillò, J., & Sarasini, F. (2021). Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 149(May), 1-7. https://doi.org/10.1016/j.compositesa.2021.106488
Ramamoorthy, S. K., Skrifvars, M., & Persson, A. (2015). A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews, 55(1), 107–162. https://doi.org/10.1080/15583724.2014.971124
Sapiai, N., Jumahat, A., Shaari, N., & Tahir, A. (2020). Mechanical properties of nanoclay-filled kenaf and hybrid glass/kenaf fiber composites. Materials Today: Proceedings, 46, 1787-1791. https://doi.org/10.1016/j.matpr.2020.08.025
Sathish Kumar, V., Ganesan, N., & Indira, P. V. (2021). Engineering properties of hybrid fibre reinforced ternary blend geopolymer concrete. Journal of Composites Science, 5(8). https://doi.org/10.3390/jcs5080203
Silva, G., Kim, S., Aguilar, R., & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
Soe, K. T., Zhang, Y. X., & Zhang, L. C. (2013). Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Construction and Building Materials, 43, 399-407. https://doi.org/10.1016/j.conbuildmat.2013.02.021
Su, H. N., & Lee, P. C. (2010). Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics, 85(1), 65-79. https://doi.org/10.1007/s11192-010-0259-8
Su, Z., Guo, L., Zhang, Z., & Duan, P. (2019). Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Construction and Building Materials, 203, 525-540. https://doi.org/10.1016/j.conbuildmat.2019.01.121
Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P., & Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials, 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122
Taghipoor, H., & Sadeghian, A. (2022). Experimental investigation of single and hybrid-fiber reinforced concrete under drop weight test. Structures, 43(January), 1073-1083. https://doi.org/10.1016/j.istruc.2022.07.030
Tran, T. T., Pham, T. M., & Hao, H. (2020). Effect of hybrid fibers on shear behaviour of geopolymer concrete beams reinforced by basalt fiber reinforced polymer (BFRP) bars without stirrups. Composite Structures, 243, 112236. https://doi.org/10.1016/j.compstruct.2020.112236
Vairagade, V. S., & Dhale, S. A. (2023). Hybrid fibre reinforced concrete – A state of the art review. Hybrid Advances, 3(April), 100035. https://doi.org/10.1016/j.hybadv.2023.100035
Valente, M., Sambucci, M., & Sibai, A. (2021). Geopolymers vs. Cement matrix materials: How nanofiller can help a sustainability approach for smart construction applications—A review. Nanomaterials, 11(8), 2007. https://doi.org/10.3390/nano11082007
van Eck, N. J., & Waltman, L. (2021). Manual de VOSviewer. Univeristeit Leiden, July. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf
Wuni, I. Y., Shen, G. Q., & Osei-Kyei, R. (2020). Sustainability of off-site construction: A bibliometric review and visualized analysis of trending topics and themes. Journal of Green Building, 15(4), 131-154. https://doi.org/10.3992/jgb.15.4.131
Yang, X., Zhang, Y., & Lin, C. (2022a). Compressive and flexural properties of ultra-fine coal gangue-based geopolymer gels and microscopic mechanism analysis. Gels, 8(3), 145. https://doi.org/10.3390/gels8030145
Yang, X., Zhang, Y., & Lin, C. (2022b). Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers. Gels, 8(3), 195. https://doi.org/10.3390/gels8030195
Yu, R., Tang, P., Spiesz, P., & Brouwers, H. J. H. (2014). A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 60, 98-110. https://doi.org/10.1016/j.conbuildmat.2014.02.059
Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. https://doi.org/10.1016/j.jclepro.2020.124353
Zhang, H., Sarker, P. K., Wang, Q., He, B., & Jiang, Z. (2021). Strength and toughness of ambient-cured geopolymer concrete containing virgin and recycled fibres in mono and hybrid combinations. Construction and Building Materials, 304(August), 124649. https://doi.org/10.1016/j.conbuildmat.2021.124649
Zhao, X., Wang, H., Zhou, B., Gao, H., & Lin, Y. (2021). Resistance of soda residue–fly ash based geopolymer mortar to acid and sulfate environments. Materials, 14(4), 1-19. https://doi.org/10.3390/ma14040785
Zhong, H., & Zhang, M. (2022). Dynamic splitting tensile behaviour of engineered geopolymer composites with hybrid polyvinyl alcohol and recycled tyre polymer fibres. Journal of Cleaner Production, 379(P2), 134779. https://doi.org/10.1016/j.jclepro.2022.134779
Zuaiter, M., El-Hassan, H., El-Ariss, B., & El-Maaddawy, T. (2022). Early-age properties of slag-fly ash blended geopolymer concrete reinforced with glass fibers – A preliminary study. World Congress on Civil, Structural, and Environmental Engineering, 1114. https://doi.org/10.11159/icsect22.128
ISSN 0128-7680
e-ISSN 2231-8526