PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Special Issue / JST Vol. 32 (S5) 2024 / JST(S)-0630-2024

 

Performance of Hybrid Fiber Reinforced Geopolymer Composites: Scientometric and Conventional Review

Maryam Firas Al-Baldawi, Farah Nora Aznieta Abdul Aziz, Al Ghazali Noor Abbas, Noor Azline Mohd Nasir and Norsuzailina Mohamed Sutan

Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024

DOI: https://doi.org/10.47836/pjst.32.S5.03

Keywords: Fresh properties, geopolymer concrete, hybrid fiber, mechanical properties, Scientometric analysis

Published on: 30 October 2024

Hybrid fibers are an interesting addition to reinforce geopolymer-based composites due to their advantages over single-fiber reinforcement. The performance of hybrid fibers is dependent on the fibers'' composition, type, properties, length, and volume fraction. Therefore, this review discusses the state-of-the-art hybrid fiber-reinforced geopolymer composites (HFRGC) through two approaches: scientometric analysis and conventional review of HFRGC based on data extracted from Scopus from 2013 until 2023. The scientometric analysis was carried out by adopting VOS Viewer software and focuses on the annual publication of documents, top publication sources, co-occurrence keywords, researchers, top-cited papers, and countries. In contrast, the desk study refers to experimental data on the fresh properties and compressive, tensile, and flexural properties of HFRGC. This review output aids researchers in networking, promoting cooperative research, exchanging ideas, and creating joint ventures among researchers of HFRGC worldwide. The performance of HFRGC obtained from the desk study showed the potential of HFRGC as an option for a greener composite that will benefit the construction industry.

  • Abbas, A. G. N., Aziz, F. N. A. A., Abdan, K., Nasir, N. A. M., & Huseien, G. F. (2022). A state-of-the-art review on fibre-reinforced geopolymer composites. Construction and Building Materials, 330(January), 127187. https://doi.org/10.1016/j.conbuildmat.2022.127187

  • Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, 17(April), e01234. https://doi.org/10.1016/j.cscm.2022.e01234

  • Alkadhim, H. A., Amin, M. N., Ahmad, W., Khan, K., Al-Hashem, M. N., Houda, S., Azab, M., & Baki, Z. A. (2022). Knowledge mapping of the literature on fiber-reinforced geopolymers: A scientometric review. Polymers, 14(22), 5008. https://doi.org/10.3390/polym14225008

  • Alrefaei, Y., & Dai, J. G. (2018). Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Construction and Building Materials, 184, 419-431. https://doi.org/10.1016/j.conbuildmat.2018.07.012

  • Alwesabi, E. A. H., Abu Bakar, B. H., Alshaikh, I. M. H., Abadel, A. A., Alghamdi, H., & Wasim, M. (2022). An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete. Structures, 37(January), 379-388. https://doi.org/10.1016/j.istruc.2022.01.025

  • Amin, M. N., Ahmad, W., Khan, K., & Ahmad, A. (2022). Steel fiber-reinforced concrete: A systematic review of the research progress and knowledge mapping. Materials, 15(17), 6155. https://doi.org/10.3390/ma15176155

  • Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270, 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857

  • Arunkumar, K., Muthukannan, M., Sureshkumar, A., Chithambarganesh, A., & Rangaswamy Kanniga Devi, R. (2022). Mechanical and durability characterization of hybrid fibre reinforced green geopolymer concrete. Research on Engineering Structures and Materials, 8(1), 19-43. https://doi.org/10.17515/resm2021.280ma1604

  • Asrani, N. P., Murali, G., Parthiban, K., Surya, K., Prakash, A., Rathika, K., & Chandru, U. (2019). A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Construction and Building Materials, 203, 56-68. https://doi.org/10.1016/j.conbuildmat.2019.01.072

  • Bakthavatchalam, K., & Rajendran, M. (2021). An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Materials Today: Proceedings, 46, 8494-8501. https://doi.org/10.1016/j.matpr.2021.03.506

  • Baziak, A., Pławecka, K., Hager, I., Castel, A., & Korniejenko, K. (2021). Development and characterization of lightweight geopolymer composite reinforced with hybrid carbon and steel fibers. Materials, 14(19), 5741. https://doi.org/10.3390/ma14195741

  • Chadegani, A. A., Salehi, H., Md Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of science and Scopus databases. Asian Social Science, 9(5), 18-26. https://doi.org/10.5539/ass.v9n5p18

  • Chen, K., Wu, D., Chen, H. X., Zhang, G., Yao, R., Pan, C., & Zhang, Z. (2021a). Development of low-calcium fly ash-based geopolymer mortar using nanosilica and hybrid fibers. Ceramics International, 47(15), 21791-21806. https://doi.org/10.1016/j.ceramint.2021.04.196

  • Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021b). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496

  • Chen, Y., Lin, M., & Zhuang, D. (2022). Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 297(February), 133932. https://doi.org/10.1016/j.chemosphere.2022.133932

  • Cheng, Z., Liu, Z., Hao, H., Lu, Y., & Li, S. (2022). Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers. Construction and Building Materials, 342(PB), 128090. https://doi.org/10.1016/j.conbuildmat.2022.128090

  • Chithambar Ganesh, A., & Muthukannan, M. (2019). Experimental study on the behaviour of hybrid fiber reinforced geopolymer concrete under ambient curing condition. IOP Conference Series: Materials Science and Engineering, 561(1), 012014. https://doi.org/10.1088/1757-899X/561/1/012014

  • Daniel, A. J., Sivakamasundari, S., & Abhilash, D. (2017). Comparative study on the behaviour of geopolymer concrete with hybrid fibers under static cyclic loading. Procedia Engineering, 173, 417-423. https://doi.org/10.1016/j.proeng.2016.12.041

  • Farooq, M., Bhutta, A., & Banthia, N. (2019). Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cement and Concrete Composites, 103(January), 183-192. https://doi.org/10.1016/j.cemconcomp.2019.05.004

  • Feng, J., Yin, G., Tuo, H., Wen, C., Liu, Z., Liang, J., & Zhang, Y. (2021). Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete. Construction and Building Materials, 304(April), 124559. https://doi.org/10.1016/j.conbuildmat.2021.124559

  • Firas, A. B. M., Aziz, F. N. A. A., Abbas, A. G. N., Nasir, N. A. M., & Safiee, N. A. (2024). Thermal performance of natural fiber-reinforced geopolymer concrete. In N. Sabtu (Ed.), Lecture Notes in Civil Engineering (Vol. 385, pp. 151-162). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6018-7_11

  • Gao, X., Yu, Q. L., Yu, R., & Brouwers, H. J. H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures, 50(2), 165. https://doi.org/10.1617/s11527-017-1030-x

  • Geboes, Y., Katalagarianakis, A., Soete, J., Ivens, J., & Swolfs, Y. (2022). The translaminar fracture toughness of high-performance polymer fibre composites and their carbon fibre hybrids. Composites Science and Technology, 221(February), 109307. https://doi.org/10.1016/j.compscitech.2022.109307

  • Gu, M., Ahmad, W., Alaboud, T. M., Zia, A., Akmal, U., Awad, Y. A., & Alabduljabbar, H. (2022). Scientometric analysis and research mapping knowledge of coconut fibers in concrete. Materials, 15(16), 5639. https://doi.org/10.3390/ma15165639

  • Guler, S., & Akbulut, Z. F. (2022). Effect of high-temperature on the behavior of single and hybrid glass and basalt fiber added geopolymer cement mortars. Journal of Building Engineering, 57(May), 104809. https://doi.org/10.1016/j.jobe.2022.104809

  • Guo, L., Wu, Y., Xu, F., Song, X., Ye, J., Duan, P., & Zhang, Z. (2020). Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Composites Part B: Engineering, 183(November 2019), 107689. https://doi.org/10.1016/j.compositesb.2019.107689

  • Heweidak, M., Kafle, B., & Al-Ameri, R. (2022). Influence of hybrid basalt fibres’ length on fresh and mechanical properties of self-compacted ambient-cured geopolymer concrete. Journal of Composites Science, 6(10), 292. https://doi.org/10.3390/jcs6100292

  • Hosseini, M. R., Martek, I., Zavadskas, E. K., Aibinu, A. A., Arashpour, M., & Chileshe, N. (2018). Critical evaluation of off-site construction research: A Scientometric analysis. Automation in Construction, 87(January), 235-247. https://doi.org/10.1016/j.autcon.2017.12.002

  • Humur, G., & Çevik, A. (2022). Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating–cooling cycles. Construction and Building Materials, 326, 126846. https://doi.org/10.1016/j.conbuildmat.2022.126846

  • Junior, J., Saha, A. K., Sarker, P. K., & Pramanik, A. (2021). Workability and flexural properties of fibre-reinforced geopolymer using different mono and hybrid fibres. Materials, 14(16), 4447. https://doi.org/10.3390/ma14164447

  • Kan, L., Zhang, L., Zhao, Y., & Wu, M. (2020). Properties of polyvinyl alcohol fiber reinforced fly ash based engineered geopolymer composites with zeolite replacement. Construction and Building Materials, 231, 117161. https://doi.org/10.1016/j.conbuildmat.2019.117161

  • Khan, M. Z. N., Hao, Y., Hao, H., Shaikh, F. U. A., & Liu, K. (2018). Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests. Construction and Building Materials, 185, 338-353. https://doi.org/10.1016/j.conbuildmat.2018.07.092

  • Khan, M. Z. N., Hao, Y., Hao, H., & Shaikh, F. uddin A. (2019). Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cement and Concrete Composites, 104, 103343. https://doi.org/10.1016/j.cemconcomp.2019.103343

  • Kozub, B., Bazan, P., Mierzwiński, D., & Korniejenko, K. (2021). Fly-ash-based geopolymers reinforced by melamine fibers. Materials, 14(2), 1-13. https://doi.org/10.3390/ma14020400

  • Kumar, R., Suman, S. K., & Sharma, M. (2019). Laboratory investigation on the synthesis and mechanical characterization of fiber reinforced geopolymer concrete. Materials Today: Proceedings, 32, 268-273. https://doi.org/10.1016/j.matpr.2020.01.360

  • Lan, T., Meng, Y., Ju, T., Chen, Z., Du, Y., Deng, Y., Song, M., Han, S., & Jiang, J. (2022). Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient - A review. Resources, Conservation and Recycling, 182(March), 106308. https://doi.org/10.1016/j.resconrec.2022.106308

  • Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16(January), e00894. https://doi.org/10.1016/j.cscm.2022.e00894

  • Lin, J. -X., Chen, G., Pan, H.-S., , Wang, Y.-C., Guo, Y. Chang, & Jiang, Z.-X. (2023). Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics. Composite Structures, 323(July), 117437. https://doi.org/10.1016/j.compstruct.2023.117437

  • Matsimbe, J., Dinka, M., Olukanni, D., & Musonda, I. (2023). Bibliometric trends of geopolymer research in Sub-Saharan Africa. Materials Today Communications, 35(April), 106082. https://doi.org/10.1016/j.mtcomm.2023.106082

  • Meho, L. I. (2019). Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics, 13(1), 419-433. https://doi.org/10.1016/j.joi.2019.02.006

  • Mousavinejad, S. H. G., & Sammak, M. (2021). Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 32(April), 1420-1427. https://doi.org/10.1016/j.istruc.2021.03.112

  • Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280-294. https://doi.org/10.1016/j.conbuildmat.2017.03.059

  • Preda, N., Costas, A., Lilli, M., Sbardella, F., Scheffler, C., Tirillò, J., & Sarasini, F. (2021). Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 149(May), 1-7. https://doi.org/10.1016/j.compositesa.2021.106488

  • Ramamoorthy, S. K., Skrifvars, M., & Persson, A. (2015). A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews, 55(1), 107–162. https://doi.org/10.1080/15583724.2014.971124

  • Sapiai, N., Jumahat, A., Shaari, N., & Tahir, A. (2020). Mechanical properties of nanoclay-filled kenaf and hybrid glass/kenaf fiber composites. Materials Today: Proceedings, 46, 1787-1791. https://doi.org/10.1016/j.matpr.2020.08.025

  • Sathish Kumar, V., Ganesan, N., & Indira, P. V. (2021). Engineering properties of hybrid fibre reinforced ternary blend geopolymer concrete. Journal of Composites Science, 5(8). https://doi.org/10.3390/jcs5080203

  • Silva, G., Kim, S., Aguilar, R., & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132

  • Soe, K. T., Zhang, Y. X., & Zhang, L. C. (2013). Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Construction and Building Materials, 43, 399-407. https://doi.org/10.1016/j.conbuildmat.2013.02.021

  • Su, H. N., & Lee, P. C. (2010). Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics, 85(1), 65-79. https://doi.org/10.1007/s11192-010-0259-8

  • Su, Z., Guo, L., Zhang, Z., & Duan, P. (2019). Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Construction and Building Materials, 203, 525-540. https://doi.org/10.1016/j.conbuildmat.2019.01.121

  • Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P., & Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials, 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122

  • Taghipoor, H., & Sadeghian, A. (2022). Experimental investigation of single and hybrid-fiber reinforced concrete under drop weight test. Structures, 43(January), 1073-1083. https://doi.org/10.1016/j.istruc.2022.07.030

  • Tran, T. T., Pham, T. M., & Hao, H. (2020). Effect of hybrid fibers on shear behaviour of geopolymer concrete beams reinforced by basalt fiber reinforced polymer (BFRP) bars without stirrups. Composite Structures, 243, 112236. https://doi.org/10.1016/j.compstruct.2020.112236

  • Vairagade, V. S., & Dhale, S. A. (2023). Hybrid fibre reinforced concrete – A state of the art review. Hybrid Advances, 3(April), 100035. https://doi.org/10.1016/j.hybadv.2023.100035

  • Valente, M., Sambucci, M., & Sibai, A. (2021). Geopolymers vs. Cement matrix materials: How nanofiller can help a sustainability approach for smart construction applications—A review. Nanomaterials, 11(8), 2007. https://doi.org/10.3390/nano11082007

  • van Eck, N. J., & Waltman, L. (2021). Manual de VOSviewer. Univeristeit Leiden, July. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf

  • Wuni, I. Y., Shen, G. Q., & Osei-Kyei, R. (2020). Sustainability of off-site construction: A bibliometric review and visualized analysis of trending topics and themes. Journal of Green Building, 15(4), 131-154. https://doi.org/10.3992/jgb.15.4.131

  • Yang, X., Zhang, Y., & Lin, C. (2022a). Compressive and flexural properties of ultra-fine coal gangue-based geopolymer gels and microscopic mechanism analysis. Gels, 8(3), 145. https://doi.org/10.3390/gels8030145

  • Yang, X., Zhang, Y., & Lin, C. (2022b). Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers. Gels, 8(3), 195. https://doi.org/10.3390/gels8030195

  • Yu, R., Tang, P., Spiesz, P., & Brouwers, H. J. H. (2014). A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 60, 98-110. https://doi.org/10.1016/j.conbuildmat.2014.02.059

  • Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. https://doi.org/10.1016/j.jclepro.2020.124353

  • Zhang, H., Sarker, P. K., Wang, Q., He, B., & Jiang, Z. (2021). Strength and toughness of ambient-cured geopolymer concrete containing virgin and recycled fibres in mono and hybrid combinations. Construction and Building Materials, 304(August), 124649. https://doi.org/10.1016/j.conbuildmat.2021.124649

  • Zhao, X., Wang, H., Zhou, B., Gao, H., & Lin, Y. (2021). Resistance of soda residue–fly ash based geopolymer mortar to acid and sulfate environments. Materials, 14(4), 1-19. https://doi.org/10.3390/ma14040785

  • Zhong, H., & Zhang, M. (2022). Dynamic splitting tensile behaviour of engineered geopolymer composites with hybrid polyvinyl alcohol and recycled tyre polymer fibres. Journal of Cleaner Production, 379(P2), 134779. https://doi.org/10.1016/j.jclepro.2022.134779

  • Zuaiter, M., El-Hassan, H., El-Ariss, B., & El-Maaddawy, T. (2022). Early-age properties of slag-fly ash blended geopolymer concrete reinforced with glass fibers – A preliminary study. World Congress on Civil, Structural, and Environmental Engineering, 1114. https://doi.org/10.11159/icsect22.128

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0630-2024

Download Full Article PDF

Share this article

Recent Articles