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ABSTRACT

Detection and quantification of DNA is critical to many areas of  life sciences and health care, from 
disease diagnosis to drug screening. The transduction of DNA through electrochemical methods have a 
fast response rate and with a conductometric device like the silicon nanowire which can be fabricated 
to have a similar diameter of the DNA molecule being targeted, detection is real-time. Critical to this is 
the interfacing of a current-source and an amplifier capable of achieving a maximum of 10 pico ampere 
input bias. In this project, we fabricated a silicon nanowire using the top down approach and built a 
circuit that can mimic the output signal as low as 12 nA and achieved a gain of 1 million to be interfaced 
with the nanowire for real-time DNA detection.    
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INTRODUCTION

Recently, biochemical sensors have attracted 
interest among research areas in different 
applications due to their efficiency in 
monitoring and regulating certain areas such 
as food industry, toxicology testing, medical 

diagnostics, environmental monitoring and 
drug industries (Yuan, Duan, Yang, Luo, & 
Xi, 2012). Biochemical sensors are defined 
as analytical devices that incorporate sensing 
materials with molecular recognition elements 
(enzyme, protein, antibody, nucleic acid, 
hormone, chemical compounds, etc.) that gets 
integrated within the transducers (Usman & 
Hamidon, 2015).

DNA detection is one area that drives 
innovation of biochemical sensing and 
with the rapid development of advanced 
nanotechnology, many nanomaterials for 
sensing with unique properties, favoured 
size, and chemical compositions have been 
fabricated to be incorporated within the 
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transducer to aid DNA detection. One of them is the application of one-dimensional (1D) 
nanostructures (nanotubes, nanowires, nanorods, nanobelts and heteronanowires). Silicon 
nanowire (SiNW) is one of the 1D nanostructures that has emerged as the promising sensing 
nanomaterial upon its unique optical properties, mechanical and electrical (Gao et al., 2011). 
The SiNWs have gained popularity in the field of sensor development due of their ultrasensitive 
nature and high surface-to-volume ratio, fast response, biocompatibility, good reversibility, and 
H-terminated surface, which allows easy attachment to various functional groups. Additionally, 
the reliability and reproducibility of their fabrication process make them promising candidates 
for highly sensitive sensors. (Talin, Hunter, Leonard, & Rokad, 2006; Vu et al., 2010). 

Nano-scale bioelectric devices achieve extraordinary sensitivity when used to detect 
molecular interactions (Vu et al., 2010). These devices are useful in the analysis of biomedical 
diagnostics. Most diseases are diagnosed based on symptoms which can sometimes be 
misleading. Biological molecules such as lipids, proteins and nucleic acid are related to the 
primary cause of disease. 

Figure 1. The molecules in the nanoscale
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of concentration 10 μM, 1 μm width showed output of 4.25 nA demonstrating the quality of 
transduction of SiNW (Nuzaihan et al., 2016). When utilised as an electrochemical sensor, 
detection is based on redox reaction as a result of chemical reaction between immobilised 
biomolecule or chemical species on working electrode and target analyte which finally produces 
measurable electrical current (Monošík, Streďanský & Šturdík, 2012).

The SiNWs-FET sensor consists of three electrodes: source, drain, and gate and its functions 
based on conductive change of the carrier on the surface of SiNWs either accumulation or 
depletion charge. When negatively charged, molecules bind on the n-type SiNW surface 
resulting in accumulation of the negative carriers thus, increasing the resistance reading and 
vice versa if using p-type SiNWs (Zhang & Ning, 2012).

There are many studies on SiNWs with most examining the latter’s effects of a biosensing 
event, for example, protein detection or pH measurement on the electrical properties of the 
nanowire (Kargar & Christen, 2008). They have also been used for glucose detection (Shao, 
Shan, Wong, & Lee, 2005).  DNA hybridisation detection (Stern et al., 2007), viral detection 
(Patolsky et al., 2004), and even for extracellular recording from electrogenic cells (Patolsky, 
2006). Despite the great potential of the SiNW, no device based on specific SiNW has been 
integrated with all-day-life in the last decade. This is mainly due to the need to interface these 
nanomaterials with nanoscale platforms (Serre, Ternon, Stambouli, Periwal, & Baron, 2013). 
The proposed sensing schemes implemented on silicon nanowire are inherently compatible 
with modern CMOS process (Ramírez-Angulo, Carvajal, & Torralba, 2004). Although the 
signal generated is ultra-small, it can be amplified using a pico-Ampere sensitive amplifier 
(Steadman, Vogtmeier, Kemna, Quossai, & Hosticka, 2005). Current modules on a single 
chip makes it possible to realise ultralow-current-mode circuit as they suffer less fluctuations 
(Halloran & Sarpeshkar, 2004; Linares-barranco & Serrano-gotarredona, 2003). This helps in 
maintaining the integrity of the signal. 

This work investigates the ohmic properties of a top-down fabricated SiNW for its 
optimised electrical sensitivity for biosensing applications and proposes an interface circuit 
that will make the device readable and  portable thus, enhancing the utility of silicon nanowire 
to be a point-of-care device which can be integrated with all-day-life.

MATERIALS AND METHOD

For the purposes of this research, SiNW biosensor was designed with electron beam 
lithography (EBL) using the top-down fabrication method. The device structure was formed 
by implementing reactive ion etching (RIE) in order to integrate the fabrication with a CMOS 
process. A p-type silicon on insulator (SOI) wafer with a 160 nm silicon layer on a 200 nm 
buffered-oxide (BOX) insulating layer with a resistivity of 1-20 Ω-cm was used as the starting 
material. Standard cleaning procedure using RCA1, BOE and RCA 2 were employed to remove 
all contaminants on the surface of the sample before it was washed in de-ionised water and dried 
on a hot conduction plate at a temperature of 200°C for not less than 5 minutes to eliminate 
the water residue and cooled down to room temperature for not less than 10 minutes.



Kamilu Iman Usman, Mohd Nizar Hamidon, Siti Fatimah Abd Rahman and Guan Ling Sim

254 Pertanika J. Sci. & Technol. 25 (S): 251 - 258 (2017)

Figure 3 shows the morphology of the SiNW with a width of 60 nm we have developed as 
a high-performance sensor that is label free and direct time for DNA detection using SiNWs-
FET sensor top-down approach. We also managed to improve the sensitivity of SiNWs-FET 
sensor by optimising probe concentration, buffer ionic strength, and the gate voltage. The 
Keithley 4200 Semiconductor Parameter Analyzer (SPA) is used to demonstrate the usefulness 
of the fabricated sample.

The OPA129 is a monolithic operational amplifier manufactured by Texas instruments with 
ultra-low current using dielectrically-isolated FET (DIFET) with advanced geometry which 
makes the amplifier achieve a high level of performance. Dielectrically-isolated FET fabrication 
eliminates leakage current at isolation-junctions which is a contributing factor to input bias 
current with the traditional monolithic FETs. This decreases input bias current by a factor of 
10-100. The OPA129 has an offset current unit of femto ampere and is fitted with a noise-free 
cascode which makes the device capable and efficient in handling nanoscale sensitivity.

RESULTS AND DISCUSSION

The idea behind SiNWs as conductometric devices for electrochemical sensing is to monitor 
the conductance across the surface by measuring its resistance which is altered by the charges 
along its surface. When molecules bind with the SiNWs, their ability to conduct is altered 
and this change serves as the mechanism for detection. Depending on the surface-to-volume 
ratio, the resistance of the NWs increases with the decreasing width of the NWs. The I-V 
characterisation of the SiNW illustrates the effectiveness of the fabrication sample as a DNA 
detection device and gives us a target-range of Gain for our interface circuit. Figure 4 shows 
the ohmic properties of the SiNW and presents the device as a useful sensor.

Using a Keithley 4200 Semiconductor Parameter Analyzer (SPA) and supplying the 
SiNW with a sweep voltage of 0-2 V (Figure 4b), 39 data points were generated indicating an 
increase in resistance from 6.05E8 Ω at 0.05 V to 6.81E9 Ω at 1.95 V leading to a decrease 
in conductance.

Figure 3. FESEM image showing the morphology of fabricated SiNW
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Considering the I-V properties of the SiNW derived from I-V characterisation, the range 
of current to be sensed is (0.8E-11 to 2.8E-10) Ampere although a significant hike is expected 
after the sensing event.  There are very few CMOS components designed for nanoelectronics 
as this field is still widely untapped but the OPA129 operational amplifier is one that has the 
capability to be integrated in nano range. In trying to amplify the signal, there was unwanted 
interaction between the feedback resistor of the op-amp and the SiNW which caused the current 
to be unpredictable. In order to successfully amplify this sort of signal, we designed a current 
source that will mimic the output signal of the SiNW. The quality of such a circuit must be 
such that it isolates the signal it produces to prevent unwanted interaction in the next phase. 
We used the diamond buffer topology which is primarily used in audio applications. Using 
this famous configuration as a current source model, we were able to design a constant current 
source that can isolate capacitive loads and boost op-amp signal.

Figure 4a. Measurement setup
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Figure 4b. I-V graph of the SiNW with 60nm width
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Figure 5. Simulation of the current source
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Figure 5 shows the classic diamond buffer structure renowned for isolation, transistors 
Q1 and Q3 are identical devices, and so are Q2 and Q4. These four transistors must operate at 
the same bias current. This symmetry is essential and results in exceptionally low distortion 
and isolation.

Figure 6. Simulation of the OPA129 Op-Amp
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Figure 7. Current source measurement
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Figure 8. Current source amplifier 

The current source graph in Figure 7 shows the measurement of the output current from 
the prototype using a keithley 480 picoammeter with voltage ranging from 1-10 volts. Figure 
8 shows the output signal from the amplifier in volts. The similarity of the curves indicates a 
very high integrity in the amplification of the signal.
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CONCLUSION

In order for interfacing to occur with a SiNW, it has to be fabricated with the top-down approach 
for good ohmic contact and easily integrated with nanoelectronic components. Our circuit 
has proven to be capable of signal isolation and amplification but we are not yet convinced 
of the method of integrating the SiNW onto the circuit due to lack of interfacing projects in 
nanoelectronics. In designing a nano range current source, isolation can be achieved using a 
diamond buffer configuration. The successful amplification of this ultra-small signal indicates 
that the SiNW can be interfaced for further utility, making the SiNW a portable sensing device 
with numerous applications in everyday life such as; point-of-care or field testing for bioassays.
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